
Artelys Knitro Documentation
Release 11.0.0

Artelys

Apr 26, 2018





CONTENTS

1 Introduction 3

2 User guide 15

3 Reference manual 121

i



ii



Artelys Knitro Documentation, Release 11.0.0

This documentation is divided into three parts. The Introduction provides an overview of the Artelys Knitro solver
and its capabilities, and explains where to get it and how to install it. If you already have a running version of Knitro
and want to learn how to use it, you may want to skip the introduction and go directly to the User guide. This section
provides a gentle introduction to the main features of Knitro by means of a few simple examples. Finally, the last
chapter consists of the Reference manual: an exhaustive description of the Knitro API, user options, status codes and
output files that are associated with the software.

CONTENTS 1



Artelys Knitro Documentation, Release 11.0.0

2 CONTENTS



CHAPTER

ONE

INTRODUCTION

This chapter contains an overview of what Artelys Knitro can do, where to obtain it and how to get it to work. If you
already have a working installation of Knitro and know the basics of what nonlinear programming is, you may want
to skip it and go directly to the next chapter, User guide. Otherwise, read on!

1.1 Product overview

Artelys Knitro is an optimization software library for finding solutions of both continuous (smooth) optimization
models (with or without constraints), as well as discrete optimization models with integer or binary variables (i.e.
mixed integer programs). Knitro is primarily designed for finding local optimal solutions of large-scale, continuous
nonlinear problems.

The problems solved by Knitro have the form

min 𝑓(𝑥) subject to 𝑐𝐿 ≤ 𝑐(𝑥) ≤ 𝑐𝑈 , 𝑏𝐿 ≤ 𝑥 ≤ 𝑏𝑈

where 𝑥 ∈ R𝑛 are the unknown variables (which can be specified as continuous, binary or integer), 𝑐𝐿 and 𝑐𝑈 are
lower and upper bounds (possibly infinite) on the general constraints, and 𝑏𝐿 and 𝑏𝑈 are lower and upper simple
bounds (possibly infinite) on the variables. This formulation allows many types of constraints, including equalities (if
𝑐𝐿 = 𝑐𝑈 ), fixed variables (if 𝑏𝐿 = 𝑏𝑈 ), and both single and double-sided inequality constraints or bounded variables.
Complementarity constraints may also be included. Knitro assumes that the functions 𝑓(𝑥), and 𝑐(𝑥) are smooth,
although problems with derivative discontinuities can often be solved successfully.

Although primarily designed for general, nonlinear optimization, Knitro is efficient at solving all of the following
classes of optimization problems (described in more detail in Section Special problem classes):

• unconstrained;

• bound constrained;

• systems of nonlinear equations;

• least squares problems, both linear and nonlinear;

• linear programming problems (LPs);

• quadratic programming problems (QPs), both convex and nonconvex;

• quadratically constrained quadratic programs (QCQPs);

• second order cone programs (SOCPs)

• mathematical programs with complementarity constraints (MPCCs);

• general nonlinear (smooth) constrained problems (NLP), both convex and nonconvex;

• mixed integer linear programs (MILP) of moderate size;

3



Artelys Knitro Documentation, Release 11.0.0

• mixed integer (convex) nonlinear programs (MINLP) of moderate size;

• derivative free (DFO) or black-box optimization.

The Knitro package provides the following features:

• efficient and robust solution of small or large problems;

• solvers for both continuous and discrete problems;

• derivative-free, 1st derivative, and 2nd derivative options;

• option to remain feasible throughout the optimization or not;

• multi-start heuristics for trying to locate the global solution;

• both interior-point (barrier) and active-set methods;

• both iterative and direct approaches for computing steps;

• support for Windows (32-bit and 64-bit), Linux (64-bit) and Mac OS X (64-bit);

• programmatic interfaces: C, C++, C#, Fortran, Java, Python, R;

• modeling language interfaces: AMPL ©, AIMMS ©, GAMS ©, MATLAB ©, MPL ©, Microsoft Excel Pre-
mium Solver ©;

• thread-safe libraries for easy embedding into application software;

• a specialized API for bound-constrained nonlinear least-squares problems.

1.2 Getting Knitro

Knitro is developed, marketed and supported by Artelys. We have offices in Chicago, London, Los Angeles, Montréal
and Paris. Support is provided in English or French.

Free, time-limited trial versions of Knitro can be downloaded from:

http://www.artelys.com/knitro

Requests for information and purchase may be directed to:

info-knitro@artelys.com

For support questions related to Knitro, send an email to:

support-knitro@artelys.com

1.3 Installation

Knitro 11.0 is supported on the platforms described in the table below.

4 Chapter 1. Introduction

http://www.ampl.com/
http://www.aimms.com/
http://www.gams.com/
http://www.mathworks.com/products/matlab/
http://www.maximal-usa.com/mpl/
http://www.solver.com/premium-solver-platform
http://www.solver.com/premium-solver-platform
http://www.artelys.com/knitro


Artelys Knitro Documentation, Release 11.0.0

PLAT-
FORM

OPERATING SYSTEM PROCESSOR

Windows
32-bit

Windows Server 2008, Vista, Windows 7, Windows 8,
Windows 8.1, Windows 10

AMD Duron/Intel Pentium3 or later
x86 CPU

Windows
64-bit

Windows Server 2008, Vista, Windows 7, Windows 8,
Windows 8.1, Windows 10

Any AMD64 or Intel EM64T
enabled 64-bit CPU

Linux 64-bit RedHat (glibc2.5+) compatible (parallel features require
OpenMP)

Any AMD64 or Intel EM64T
enabled 64-bit CPU

Mac OS X
64-bit

Version 10.8 (Mountain Lion) or later Intel EM64T enabled 64-bit CPU

For enquiries about using Knitro on unsupported platforms, please contact Artelys.

Listed below are the C/C++ compilers used to build Knitro, and the Java and Fortran compilers used to test program-
matic interfaces. It is usually not difficult for Artelys to compile Knitro in a different environment. From the 11.0
release, Knitro is compiled with the Intel compilers on all platforms. Contact us if your application requires special
compilation of Knitro.

> Windows (32-bit x86)
> > C/C++ > Intel C/C++ compiler 17.0.4
> > Java: > 1.6
> > R: > R 3.0 (R interface)
> Windows (64-bit x86_64)
> > C/C++: > Intel C/C++ compiler 17.0.4
> > Java: > 1.6
> > R: > R 3.0 (R interface)
> Linux (64-bit x86_64)
> > C/C++: > Intel C/C++ compiler 17.0.4
> > Java: > 1.6
> > R: > R 3.0 (R interface)
> Mac OS X (64-bit x86_64)
> > C/C++: > Intel C/C++ compiler 17.0.4
> > Java: > 1.6
> > R: > R 3.0 (R interface)

Instructions for installing the Knitro package on supported platforms are given below. After installing, view the
INSTALL.txt, LICENSE_KNITRO.txt, and README.txt files, then test the installation by running one of the
examples provided with the distribution.

The Knitro product contains example interfaces written in various programming languages under the directory
examples. Each example consists of a main driver program coded in the given language that defines an optimization
problem and invokes Knitro to solve it. Examples also contain a makefile illustrating how to link the Knitro library
with the target language driver program.

1.3.1 Windows

The Knitro software package for Windows is delivered as a zipped file (ending in .zip), or as a self-extracting executable
(ending in .exe). For the zipped file, double-click on it and extract all contents to a new folder. For the .exe file, double-
click on it and follow the instructions. The self-extracting executable creates start menu shortcuts and an uninstall entry
in Add/Remove Programs; otherwise, the two install methods are identical.

The default installation location for Knitro is (assuming your HOMEDRIVE is “C:”):

> C:\Program Files\Artelys

Unpacking will create a folder named knitro-11.0.0-z. Contents of the full product distribution are the following:

1.3. Installation 5



Artelys Knitro Documentation, Release 11.0.0

• INSTALL.txt: a file containing installation instructions.

• LICENSE_KNITRO.txt: a file containing the Knitro license agreement.

• README.txt: a file with instructions on how to get started using Knitro.

• Knitro_11_0_ReleaseNotes: a file containing release notes.

• get_machine_ID: an executable that identifies the machine ID, required for obtaining a Artelys license file.

• doc: a folder containing Knitro documentation, including this manual.

• include: a folder containing the Knitro header file knitro.h.

• lib: a folder containing the Knitro library and object files: knitro_objlib.a, knitro.lib and
knitro.dll, as well as any other libraries that are used with Knitro.

• examples: a folder containing examples of how to use the Knitro API in different programming lan-
guages (C, C++, C#, Fortran, Java, Python). The examples\C folder contains the most extensive set (see
examples\C\README.txt for details).

• knitroampl: a folder containing knitroampl.exe (the Knitro solver for AMPL), instructions, and an
example model for testing Knitro with AMPL.

• knitromatlab: A folder containing the files needed to use the Knitro solver for MATLAB, example models,
and the instructions and explanation file README.txt.

To activate Knitro for your computer you will need a valid Artelys license file. If you purchased a floating network
license, then refer to the Artelys License Manager User’s Manual provided in the doc folder of your distribution.

For a stand-alone, single computer license, double-click on the get_machine_ID.bat batch file provided with
the distribution. This will generate a machine ID (five pairs of hexadecimal digits). Alternatively, open a DOS-like
command window (click Start / Run, and then type cmd). Change to the directory where you unzipped the distribution,
and type get_machine_ID.exe, a program supplied with the distribution to generate the machine ID.

Email the machine ID to

info-knitro@artelys.com

if purchased through Artelys. (If Knitro was purchased through a distributor, then email the machine ID to your local
distributor). Artelys (or your local distributor) will then send you a license file containing the encrypted license text
string. The Artelys license manager supports a variety of ways to install licenses. The simplest procedure is to place
each license file in the folder:

> C:\Program Files\Artelys\

(create the folder above if it does not exist). The license file name may be changed, but must begin with the characters
artelys_lic. If this does not work, try creating a new environment variable called ARTELYS_LICENSE and set
it to the folder holding your license file(s). See information on setting environment variables below and refer to the
Artelys License Manager User’s Manual for more installation details.

Setting environment variables

In order to run Knitro binary or executable files from anywhere on your Windows computer, as well as load dynamic
libraries (or dll’s) used by Knitro at runtime, it is necessary to make sure that the PATH system environment variable is
set properly on your Windows machine. In particular, you must update the system PATH environment variable so that
it indicates the location of the Knitro lib folder (containing the Knitro provided dll’s) and the knitroampl folder
(or whichever folder contains the knitroampl.exe executable file). This can be done as follows.

• Windows 8 and later

6 Chapter 1. Introduction



Artelys Knitro Documentation, Release 11.0.0

– From the Windows Start screen, search for and open “Edit the system environment variables”.

– Click the Advanced tab.

– Click Environment Variables.

– Under System variables, edit the Path variable to add the Knitro lib folder and knitroampl folder.
Specify the whole path to these folders, and make sure to separate the paths by a semi-colon.

• Windows Vista and Windows 7

– At the Windows desktop, right-click “Computer”.

– Select “Properties”.

– Click on Advanced System Settings in the left pane.

– In the System Properties window select the Advanced tab.

– Click Environment Variables.

– Under System variables, edit the Path variable to add the Knitro lib folder and knitroampl folder.
Specify the whole path to these folders, and make sure to separate the paths by a semi-colon.

Note that you may need to restart your Windows machine after modifying the environment variables, for the changes
to take effect. Simply logging out and relogging in is not enough. Moreover, if the PATH environment variable points
to more than one folder that contains an executable or dll of the same name, the one that will be chosen is the one
whose folder appears first in the PATH variable definition.

If you are using Knitro with AMPL, you should make sure the folder containing the AMPL executable file ampl.exe
is also added to the PATH variable (as well as the folder containing the knitroampl.exe as described above).
Additionally, if you are using an external third party dll with Knitro such as your own Basic Linear Algebra Subroutine
(BLAS) libraries (see user options blasoption and blasoptionlib), or a Linear Programming (LP) solver
library (see user option lpsolver), then you will also need to add the folders containing these dll’s to the system
PATH environment variable as described in the last step above.

If you are setting the ARTELYS_LICENSE environment variable to activate your license, then follow the instructions
above, but in the last step create a new environment variable called ARTELYS_LICENSE and give it the value of the
folder containing your Artelys license file (specify the whole path to this folder).

Knitro for MATLAB

To use Knitro with MATLAB, you may need to add the Knitro/MATLAB interface files to your MATLAB path.
Assuming the default installation folders were used and the KNITRODIR environment variable contains the path to
the Knitro installation directory, set by the installer or manually, the MATLAB path can be updated with the following
commands in MATLAB:

> addpath(strcat(getenv('KNITRODIR’),’\knitromatlab'));
> savepath();

Alternatively, if the environment variable is not set properly, you can update the MATLAB path by calling addpath()
with the full path to the Knitro/MATLAB interface files, such as:

> addpath('C:\Program Files\Artelys\Knitro |release|\knitromatlab');
> savepath();

1.3.2 Unix (Linux, Mac OS X)

Knitro is supported on Linux (64-bit), Mac OS X (64-bit x86_64 on Mac OS X 10.8 or higher).

1.3. Installation 7



Artelys Knitro Documentation, Release 11.0.0

The Knitro software package for Unix is delivered as a gzipped tar file, or as a zip file on Mac OS X. Save this file in
a fresh subdirectory on your system. To unpack a gzipped tar file, type the commands:

> gunzip knitro-|release|-platformname.tar.gz
> tar -xvf knitro-|release|-platformname.tar

Unpacking will create a directory named knitro-11.0.0-z. Contents of the full product distribution are the following:

• INSTALL: A file containing installation instructions.

• LICENSE_KNITRO: A file containing the Knitro license agreement.

• README: A file with instructions on how to get started using Knitro.

• Knitro_11_0_ReleaseNotes: A file containing release notes.

• get_machine_ID: An executable that identifies the machine ID, required for obtaining a Artelys license file.

• doc: A directory containing Knitro documentation, including this manual.

• include: A directory containing the Knitro header file knitro.h.

• lib: A directory containing the Knitro library files: libknitro.a and libknitro.so
(libknitro.dylib on Mac OS X), as well as any other libraries that can be used with Knitro.

• examples: A directory containing examples of how to use the Knitro API in different programming lan-
guages (C, C++, Fortran, Java, Python). The examples/C directory contains the most extensive set (see
examples/C/README.txt for details).

• knitroampl: A directory containing knitroampl (the Knitro solver for AMPL), instructions, and an ex-
ample model for testing Knitro with AMPL.

• knitromatlab: A folder containing the files needed to use the Knitro solver for MATLAB, example models,
and the instructions and explanation file README.

To activate Knitro for your computer you will need a valid Artelys license file. If you purchased a floating
network license, then refer to the Artelys License Manager User’s Manual. For a stand-alone license, execute
get_machine_ID, a program supplied with the distribution. This will generate a machine ID (five pairs of hex-
adecimal digits). Email the machine ID to

info-knitro@artelys.com

if purchased through Artelys. (If Knitro was purchased through a distributor, then email the machine ID to your
local distributor). Artelys (or your local distributor) will then send a license file containing the encrypted license
text string. The Artelys license manager supports a variety of ways to install licenses. The simplest procedure is to
copy each license into your HOME directory. The license file name may be changed, but must begin with the charac-
ters artelys_lic (use lower-case letters). If this does not work, try creating a new environment variable called
ARTELYS_LICENSE and set it to the folder holding your license file(s). See information on setting environment
variables below and refer to the Artelys License Manager User’s Manual for more installation details.

Setting environment variables

In order to run Knitro binary or executable files from anywhere on your Unix computer, as well as load dynamic, shared
libraries (i.e. ”.so” or ”.dylib” files) used by Knitro at runtime, it is necessary to make sure that several environment
variables are set properly on your machine.

In particular, you must update the PATH environment variable so that it indicates the location of the knitroampl
directory (or whichever directory contains the knitroampl executable file). You must also update the
LD_LIBRARY_PATH (DYLD_LIBRARY_PATH on Mac OS X) environment variable so that it indicates the loca-
tion of the Knitro lib directory (containing the Knitro provided ”.so” or ”.dylib” shared libraries).

8 Chapter 1. Introduction



Artelys Knitro Documentation, Release 11.0.0

Setting the PATH and LD_LIBRARY_PATH (DYLD_LIBRARY_PATH on Mac OS X) environment variables on Unix
systems can be done as follows. In the instructions below, replace <file_absolute_path> with the full path to the di-
rectory containing the Knitro binary file (e.g. the knitroampl directory), and replace <file_absolute_library_path>
with the full path to the directory containing the Knitro shared object library (e.g. the Knitro lib directory).

Linux

If you run a Unix bash shell, then type:

> export PATH= <file_absolute_path>:$PATH
> export LD_LIBRARY_PATH= <file_absolute_library_path>:$LD_LIBRARY_PATH

If you run a Unix csh or tcsh shell, then type:

> setenv PATH <file_absolute_path>:$PATH
> setenv LD_LIBRARY_PATH <file_absolute_library_path>:$LD_LIBRARY_PATH

Mac OS X

Determine the shell being used:

> echo $SHELL

If you run a Unix bash shell, then type:

> export PATH= <file_absolute_path>:$PATH
> export DYLD_LIBRARY_PATH=<file_absolute_library_path>:$DYLD_LIBRARY_PATH

If you run a Unix csh or tcsh shell, then type:

> setenv PATH <file_absolute_path>:$PATH
> setenv DYLD_LIBRARY_PATH <file_absolute_library_path>:$DYLD_LIBRARY_PATH

Note that the value of the environment variable is only valid in the shell in which it was defined. Moreover, if a
particular environment variable points to more than one directory that contains a binary or dynamic library of the same
name, the one that will be chosen is the one whose directory appears first in the environment variable definition.

If you are using Knitro with AMPL, you should also make sure the directory containing the AMPL executable file
ampl is added to the PATH environment variable (as well as the directory containing the knitroampl executable
file as described above). Additionally, if you are using an external third party runtime library with Knitro such as your
own Basic Linear Algebra Subroutine (BLAS) libraries (see user options blasoption and blasoptionlib), or
a Linear Programming (LP) solver library (see user option lpsolver), then you will also need to add the directories
containing these libraries to the LD_LIBRARY_PATH (DYLD_LIBRARY_PATH on Mac OS X) environment variable.

If you are setting the ARTELYS_LICENSE environment variable to activate your license, then follow the instructions
above to create a new environment variable called ARTELYS_LICENSE and give it the value of the directory con-
taining your Artelys license file (specify the whole path to this directory). For more installation options and general
troubleshooting, read the Artelys License Manager User’s Manual.

Knitro for MATLAB

To use Knitro with MATLAB, you may need to add the Knitro/MATLAB interface files to your MATLAB path.
Assuming the default installation folders were used and the KNITRODIR environment variable contains the path to
the Knitro installation directory, the MATLAB path can be updated with the following commands in MATLAB:

> addpath(strcat(getenv('KNITRODIR’),’/knitromatlab'));
> savepath();

1.3. Installation 9



Artelys Knitro Documentation, Release 11.0.0

Alternatively, if the environment variable is not set properly, you can update the MATLAB path by calling addpath()
with the full path to the Knitro/MATLAB interface files, such as:

> addpath('/home/user/knitro-|release|/knitromatlab');
> savepath();

1.4 Troubleshooting

Most issues are linked with either the calling program (such as AMPL or MATLAB) not finding the Knitro binaries,
or with Knitro not finding the license file. These are discussed first.

1.4.1 License and PATH issues

Below is a list of steps to take if you have difficulties installing Knitro.

• Create an environment variable ARTELYS_LICENSE_DEBUG and set it to 1. This will enable some debug
output printing that will indicate where the license manager is looking for a license file. See Section 4.1 of
the Artelys License Manager User’s Manual for more details on how to set the ARTELYS_LICENSE_DEBUG
environment variable and generate debugging information.

• Ensure that the user has the correct permissions for read access to all libraries and to the license file.

• Ensure that the program calling Knitro is 32-bit (or 64-bit) when Knitro is 32-bit (or 64-bit). As an example,
you cannot use Knitro 32-bit with MATLAB 64-bit or vice versa. This applies to the Java Virtual Machine and
Python as well.

• On Windows, make sure that you are setting system environment variables rather than user environment vari-
ables, when setting environment variables for Knitro (or, if using user environment variables, that the correct
user is logged in).

• Knitro has multiple options for installing license files. If the procedure you are trying is not working, please try
an alternative procedure.

• If you have multiple Knitro executable files or libraries of the same name on your computer, make sure that
the one being used is really the one you intend to use (by making sure it appears first in the definition of the
appropriate environment variable).

Please also refer to the Artelys License Manager User’s Manual provided with your distribution for additional instal-
lation and troubleshooting information.

1.4.2 MATLAB issues

Below are some troubleshooting tips specific to the Knitro/MATLAB interface.

• Make sure the Knitro/MATLAB interface files knitromatlab_mex.mex*, knitromatlab.m,
knitromatlab_mip.p, etc., are located in a folder/directory where they can be found by your MATLAB
session. See Installation for more information on adding the Knitro/MATLAB interface files to your MATLAB
path.

• On Mac OS X, if Knitro/MATLAB is not finding the license file (or a library), try starting MATLAB from
the Terminal by typing “matlab” from a Terminal window. Sometimes environment variables are not inherited
properly by a MATLAB session on Mac OS X when the session is started by double-clicking on the MATLAB
icon.

10 Chapter 1. Introduction



Artelys Knitro Documentation, Release 11.0.0

• Ensure that the MATLAB installation calling Knitro is 32-bit (or 64-bit) when Knitro is 32-bit (or 64-bit). You
cannot use Knitro 32-bit with MATLAB 64-bit or vice versa.

• If you encounter the error message cannot load any more object with static TLS this is a MATLAB bug (bug#
961964) on Linux. You may try one of the following workaround, if the issue remains, you may contact Math-
works directly.

1. Insert ones(10)*ones(10); in the file startup.m.

2. Preload any library before starting MATLAB using the environment variable LD_PRELOAD (ex: export
LD_PRELOAD=/usr/lib64/libgomp.so.1).

3. Run MATLAB without the GUI by running the following command from a terminal matlab -nojvm.

Symbolic links, on systems that support them, are an alternative to copying / renaming the file.

1.4.3 Python interface issues

If you are using the Python interface on a Linux or Unix platform, you may need to use a Python distribution that
has been compiled with the -fopenmp flag of the gcc/g++ compiler in order to use the standard Knitro libraries.
Otherwise, you should use the sequential Knitro libraries. See Linux and Mac OS X compatibility issues for more
information.

1.4.4 Issues with LD_LIBRARY_PATH on Ubuntu

In Ubuntu, setting LD_LIBRARY_PATH directly was reported to fail; using ldconfig solved the problem as fol-
lows:

• Go to /etc/ld.so.conf.d/ directory;

• Create a new configuration file in this directory;

• Set all your environment variables in this file and save it;

• Execute sudo ldconfig -v at the prompt.

1.4.5 Loading external third party dynamic libraries

Some user options instruct Knitro to load dynamic libraries at runtime. This will not work unless the executable can
find the desired library using the operating system’s load path. Usually this is done by appending the path to the
directory that contains the library to an environment variable. For example, suppose the library to be loaded is in the
Knitro lib directory. The instructions below will correctly modify the load path.

• On Windows, type (assuming Knitro 11.0.0 is installed at its default location):

set PATH=%PATH%;C:\Program Files\Artelys\knitro-|release|-z\lib

• On Mac OS X, type (assuming Knitro 11.0.0 is installed at /tmp):

export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/tmp/knitro-|release|-z/lib

• If you run a Unix bash shell, then type (assuming Knitro 11.0.0 is installed at /tmp):

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/tmp/knitro-|release|-z/lib

• If you run a Unix csh or tcsh shell, then type (assuming Knitro 11.0.0 is installed at /tmp):

1.4. Troubleshooting 11



Artelys Knitro Documentation, Release 11.0.0

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/tmp/knitro-|release|-z/lib

1.4.6 Linux and Mac OS X compatibility issues

Linux platforms sometimes generate link errors when building the programs in examples/C. Simply type “gmake”
and see if the build is successful. You may see a long list of link errors similar to the following:

../lib/libknitro.a(.text+0x28808): In function `ktr_xeb4':
: undefined reference to `std::__default_alloc_template<true, 0>::deallo
cate(void*, unsigned int)'
../lib/libknitro.a(.text+0x28837): In function `ktr_xeb4':
: undefined reference to `std::__default_alloc_template<true, 0>::deallo
cate(void*, unsigned int)'
../lib/libknitro.a(.text+0x290b0): more undefined references to `std::__
default_alloc_template<true, 0>::deallocate(void*, unsigned int)' follow
../lib/libknitro.a(.text+0x2a0ff): In function `ktr_x1150':
: undefined reference to `std::basic_string<char, std::char_traits<char>
, std::allocator<char> >::_S_empty_rep_storage'
../lib/libknitro.a(.text+0x2a283): In function `ktr_x1150':
: undefined reference to `std::__default_alloc_template<true, 0>::deallo
cate(void*, unsigned int)'

This indicates an incompatibility between the libstdc++ library on your Linux distribution and the library that Knitro
was built with. The incompatibilities may be caused by name-mangling differences between versions of the gcc/g++
compiler, and by differences in the Application Binary Interface of the two Linux distributions. The best fix is for
Artelys to rebuild the Knitro binaries on the same Linux distribution of your target machine (matching the Linux
brand and release, and the gcc/g++ compiler versions).

Other link errors may be seen on 64-bit Linux and Mac OS X platforms related to undefined references to “omp” or
“pthread” symbols. For example, the link errors may look something like

undefined reference to `pthread_setaffinity_np@GLIBC_2.3.4'

on Linux, or

Undefined symbols:
"_GOMP_parallel_start", referenced from:

on Mac OS X. This implies either that the dynamic libraries needed for OpenMP (usually provided in system di-
rectories, or in the Knitro lib directory for the Mac OS X distribution) are not being found, or that the version of
gcc/g++ used for linking is not compatible with the OpenMP features used in the standard Knitro 11.0 libraries. To
solve this issue, be sure that the LD_LIBRARY_PATH (DYLD_LIBRARY_PATH on Mac OS X) environment variable
includes the Knitro lib directory, or try linking against the sequential versions of the Knitro libraries provided with
your platform distribution on Linux. See the README file provided in the Knitro lib directory for more information

1.4.7 Windows compatibility issues

Using the “dll” version of the Knitro library on Windows (i.e. linking against knitro1100.lib) is recommended
and should be compatible across multiple versions of the Microsoft Visual C++ (MSVC) compiler.

1.5 Release notes

12 Chapter 1. Introduction



Artelys Knitro Documentation, Release 11.0.0

Note: Knitro 11.0 will be the last major Knitro release to provide a version for the Windows 32-bit platform. Impacted
users are advised to migrate to 64-bit Windows. Not all interfaces and features are available for the 32-bit Windows
version of Knitro.

What’s new in release 11.0 ?

• Knitro 11.0 introduces a completely new C callable library API. The new API allows the user to build up the
model in pieces and to provide Knitro with a lot of structural information about the model (e.g. linear, structure,
quadratic structure, etc). The API also supports multiple callback objects for nonlinear evaluations. This allows,
for instance, the ability to provide some first derivatives using callbacks while having Knitro approximate other
first derivatives with finite-differencing. The old API will continue to be supported in the near term, but may be
deprecated in a future release. Please see Callable library API reference for an overview of the new API.

• Knitro 11.0 introduces a new solver for models with conic constraints. This includes Second Order Cone
Programs (SOCPs) as well as any more general, nonlinear optimization models with second order cone con-
straints. To enable the conic solver you must choose the Interior/Direct algorithm and set the new user option
bar_conic_enable =1. Conic constraints can be specified in the new API by specifying L2 norm struc-
tures along with linear structures to create constraints of the form ||Ax+b||<=c’x+d. In addition, Knitro may
automatically detect some quadratic constraints to be conic constraints.

• Knitro 11.0 offers improved performance on quadratically constrained quadratic programs (QCQPs) and more
general convex models. If a model is known to be convex, it is recommended that a user set the new user option
convex =1 (this option is disabled by default for nonlinear models). Setting this option will cause Knitro to
apply some specializations and tunings that often work better on convex models compared to the default user
option settings.

• Knitro 11.0 offers two new parallel linear solvers:

– MA97, a deterministic parallel linear solver (linsolver =7)

– MA86, a non-deterministic parallel linear solver (linsolver= 8)

For very large models where the linear solves are the dominant cost, we recommend trying these new parallel
linear solvers with multiple threads. MA86 will often be faster than MA97, but at the cost of generating non-
deterministic behavior. These new linear solvers are currently available on Linux only.

• Knitro 11.0 extends the existing incomplete Cholesky preconditioner option cg_precond introduced in Knitro
10.3 to handle models with equality constraints. The original version only worked on models without equality
constraints. Use of the preconditioner may offer large speedups on ill-conditioned models that take a lot of CG
iterations, particularly when using the Interior/CG algorithm.

• Knitro 11.0 offers several new user options for tuning the LP subproblems that arise in the active-set algorithm
(algorithm =3), and occasionally also in the SQP algorithm (algorithm =4). Tuning these options can
sometimes lead to significant improvements.

– act_parametric: specifies whether to solve the LP subproblems using a parametric approach

– act_lpalg: algorithm to use in LP subproblems

– act_lppresolve: controls the presolve in LP subproblems

– act_lppenalty: controls constraint penalization in LP subproblems

See Knitro user options for more details on these options.

• Knitro 11.0 includes modifications for the C++ API. These modifications improve efficiency and numerical
accuracy. Upgrading existing codes in order to use the updated API is recommended and requires some slight
modifications, mostly in order to use arrays instead of vectors.

• Knitro 11.0 offers the following new user options, in addition to those already mentioned above:

1.5. Release notes 13



Artelys Knitro Documentation, Release 11.0.0

– bndrange: any variable or constraint bound larger in magnitude than bndrange will be treated as an
infinite bound (new API only)

– eval_fcga: set this option to tell Knitro you are providing one callback routine to evaluate functions
and gradients together (new API only)

– mip_selectdir: specifies the MIP node selection direction rule

– out_hints: new output option to enable or disable hints about option settings printed at the end of the
optimization

– outname: used to specify the name of the Knitro output file (default name knitro.log) when output
is printed to a file (outmode =1 or 2).

See Knitro user options for more details on these options.

• Knitro 11.0 offers several enhancements to the KnitroR “R” interface:

– It is now open-source under LGPL license and will be available on CRAN.

– Knitro’s multi-threading options can now be used via KnitroR.

– The newpoint option is now fully functional for users to print information after each Knitro iteration.

• The high-volume license feature in Knitro, which allows checking out a license once and re-using it for many
solves, now works with floating licenses. Please see the Artelys License Manager User’s Manual for more
information.

• Knitro 11.0 offers improvements to the derivative checker (derivcheck), in order to better detect errors in
user-provided sparsity structure for the Jacobian or Hessian matrices.

Bug Fixes in release 11.0

• Fixed bug that could sometimes lead to non-deterministic behavior when running parallel multistart, multi-alg
or tuner.

• Fixed issues using MKLPARDISO linear solver with multi-threading (i.e. par_lsnumthreads>1).

• Fixed bug that could cause false claim of optimality when using finite differences to compute gradients, and an
evaluation error is encountered during the finite-difference gradient computation.

• Fixed issue with KTR_get_int_param_by_name() returning the wrong value for some user options.

14 Chapter 1. Introduction



CHAPTER

TWO

USER GUIDE

In this second chapter, we will take a look at a few examples that are designed to touch on the most important features
of Knitro. It is not meant to be an extensive reference (see Reference manual for that matter) but, rather, to walk
you through solving your first nonlinear optimization problems with Knitro thanks to a few simple and illustrative
examples.

2.1 Getting started

Knitro can take its input from many different calling programs and programming languages, with various levels of
abstraction. There are essentially three ways to interact with Knitro (in addition, a specific interface for Microsoft
Excel is available):

• via a modeling language like AMPL, AIMMS, GAMS, or MPL;

• via a numerical computing environment like R or MATLAB;

• via a programming language such as C, C++, Java, C#, Python or Fortran.

The first two methods are usually simpler, and the first has the advantage of providing derivatives “for free” since
modeling languages compute derivatives behind the scene (see Section Derivatives). Calling from a programming
language adds some complexity but offers a very fine control over the solver’s behaviour.

This section provides a hands-on example for each method, using AMPL, MATLAB, R, and C++, the latter with both
the callable library and with the object-oriented interface.

Note: Knitro’s behaviour can be controlled by user parameters. Depending on the interface used, user parameters will
be defined by their text name such as alg (this would be the case in AMPL) or by programming language identifiers
such as KN_PARAM_ALG (that would be the case in C/C++).

2.1.1 Getting started with AMPL

AMPL overview

AMPL is a popular modeling language for optimization that allows users to represent their optimization problems in
a user-friendly, readable, intuitive format. This makes the job of formulating and modeling a problem much simpler.
For a description of AMPL, visit the AMPL web site at:

http://www.ampl.com/

15

http://www.ampl.com/


Artelys Knitro Documentation, Release 11.0.0

We assume in the following that the user has successfully installed AMPL. The Knitro/AMPL executable file
knitroampl must be in the current directory where AMPL is started, or in a directory included in the PATH envi-
ronment variable.

Inside of AMPL, to invoke the Knitro solver type:

ampl: option solver knitroampl;

at the prompt. From then on, every time a solve command will be issued in AMPL, the Knitro solver will be called.

A detailed list of Knitro options and settings available through AMPL is provided in Knitro / AMPL reference.

Example AMPL model

This section provides an example AMPL model and AMPL session that calls Knitro to solve the problem. The AMPL
model is provided with Knitro in a file called testproblem.mod, which is shown below.

# Example problem formulated as an AMPL model used
# to demonstate using Knitro with AMPL.
# The problem has two local solutions:
# the point (0,0,8) with objective 936.0, and
# the point (7,0,0) with objective 951.0

# Define variables and enforce that they be non-negative.
var x{j in 1..3} >= 0;

# Objective function to be minimized.
minimize obj:

1000 - x[1]^2 - 2*x[2]^2 - x[3]^2 - x[1]*x[2] - x[1]*x[3];

# Equality constraint.
s.t. c1: 8*x[1] + 14*x[2] + 7*x[3] - 56 = 0;

# Inequality constraint.
s.t. c2: x[1]^2 + x[2]^2 + x[3]^2 -25 >= 0;

data;

# Define initial point.
let x[1] := 2;
let x[2] := 2;
let x[3] := 2;

The above example displays the ease with which an optimization problem can be expressed in the AMPL modeling
language.

Running the solver

Below is the AMPL session used to solve this problem with Knitro.

1 ampl: reset;
2 ampl: option solver knitroampl;
3 ampl: option knitro_options "alg=2 bar_maxcrossit=2 outlev=1";
4 ampl: model testproblem.mod;
5 ampl: solve;

16 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

The options passed to Knitro on line 3 above mean “use the Interior/CG algorithm” (alg=2), “refine the solution using
the Active Set algorithm” (bar_maxcrossit=2) and “limit the output from Knitro” (outlev=1). The meaning
of Knitro options and how to tweak them will be explained later, the point here is only to show how easy it is to
control Knitro’s behavior in AMPL by using knitro_options. Upon receiving the solve command, AMPL produces
the following output.

1 alg=2
2 bar_maxcrossit=2
3 outlev=1
4

5 =======================================
6 Commercial License
7 Artelys Knitro 11.0.0
8 =======================================
9

10 Knitro presolve eliminated 0 variables and 0 constraints.
11

12 algorithm: 2
13 bar_maxcrossit: 2
14 datacheck: 0
15 hessian_no_f: 1
16 outlev: 1
17 par_concurrent_evals: 0
18 The problem is identified as a QCQP.
19 Knitro changing bar_initpt from AUTO to 3.
20 Knitro changing bar_murule from AUTO to 1.
21 Knitro changing bar_penaltycons from AUTO to 1.
22 Knitro changing bar_penaltyrule from AUTO to 2.
23 Knitro changing bar_switchrule from AUTO to 2.
24 Knitro changing linesearch from AUTO to 1.
25 Knitro changing linsolver from AUTO to 4.
26

27 Problem Characteristics ( Presolved)
28 -----------------------
29 Objective goal: Minimize
30 Objective type: quadratic
31 Number of variables: 3 ( 3)
32 bounded below only: 3 ( 3)
33 bounded above only: 0 ( 0)
34 bounded below and above: 0 ( 0)
35 fixed: 0 ( 0)
36 free: 0 ( 0)
37 Number of constraints: 2 ( 2)
38 linear equalities: 1 ( 1)
39 quadratic equalities: 0 ( 0)
40 gen. nonlinear equalities: 0 ( 0)
41 linear one-sided inequalities: 0 ( 0)
42 quadratic one-sided inequalities: 1 ( 1)
43 gen. nonlinear one-sided inequalities: 0 ( 0)
44 linear two-sided inequalities: 0 ( 0)
45 quadratic two-sided inequalities: 0 ( 0)
46 gen. nonlinear two-sided inequalities: 0 ( 0)
47 Number of nonzeros in Jacobian: 6 ( 6)
48 Number of nonzeros in Hessian: 5 ( 5)
49

50 EXIT: Locally optimal solution found.
51

52 Final Statistics

2.1. Getting started 17



Artelys Knitro Documentation, Release 11.0.0

53 ----------------
54 Final objective value = 9.36000000000000e+02
55 Final feasibility error (abs / rel) = 0.00e+00 / 0.00e+00
56 Final optimality error (abs / rel) = 0.00e+00 / 0.00e+00
57 # of iterations = 7
58 # of CG iterations = 8
59 # of function evaluations = 0
60 # of gradient evaluations = 0
61 # of Hessian evaluations = 0
62 Total program time (secs) = 0.00115 ( 0.001 CPU time)
63 Time spent in evaluations (secs) = 0.00000
64

65 ===============================================================================
66

67 Knitro 11.0.0: Locally optimal or satisfactory solution.
68 objective 936; feasibility error 0
69 7 iterations; 0 function evaluations
70 ampl:

The output from Knitro tells us that the algorithm terminated successfully (“Exit: Locally optimal solution found.”
on line 44), that the objective value at the optimum found is about 936.0 (line 48) and that it took Knitro about 1
millisecond to solve the problem (line 56). More information is printed, which you do not need to understand for now;
the precise meaning of the Knitro output will be discussed in Obtaining information.

After solving an optimization problem, one is typically interested in information about the solution (other than simply
the objective value, which we already found by looking at the Knitro log). For instance, one may be interested in
printing the value of the variables x; the AMPL display command does just that:

ampl: display x;
x [*] :=
1 0
2 0
3 8
;

More information about AMPL display commands can be found in the AMPL manual.

Additional examples

More examples of using AMPL for nonlinear programming can be found in Chapter 18 of the AMPL book, see the
Bibliography.

2.1.2 Getting started with MATLAB

The Knitro interface for MATLAB, called knitromatlab, is provided with your Knitro distribution. To test whether
your installation is correct, type in the expression:

[x fval] = knitromatlab(@(x)cos(x),1)

at the MATLAB command prompt. If your installation was successful, knitromatlab returns:

x = 3.1416, fval = -1.

18 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

If you do not get this output but an error stating that knitromatlab was not found, it probably means that the path has
not been added to MATLAB. If Knitro is found and called but returns an error, it probably means that no license was
found. In any of these situations, please see Troubleshooting.

The knitromatlab interface

The Knitro/MATLAB interface function is very similar to MATLAB’s built-in fmincon function; the most elaborate
form is:

[x,fval,exitflag,output,lambda,grad,hessian] = ...
knitromatlab(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon, ...
extendedFeatures,options,KnitroOptions)

but the simplest function call reduces to:

x = knitromatlab(fun,x0)

The knitromatlab function was designed to provide a similar user experience to MATLAB’s fmincon optimization
function. See Knitro / MATLAB reference for a more extensive description of knitromatlab interface.

The ktrlink interface previously provided with the MATLAB Optimization Toolbox is no longer supported. See the
reference manual on using knitrolink instead.

First MATLAB example

Let’s consider the same example as before (in section Getting started with AMPL), converted into MATLAB.

% objective to minimize
obj = @(x) 1000 - x(1)^2 - 2*x(2)^2 - x(3)^2 - x(1)*x(2) - x(1)*x(3);

% No nonlinear equality constraints.
ceq = [];

% Specify nonlinear inequality constraint to be nonnegative
c2 = @(x) x(1)^2 + x(2)^2 + x(3)^2 - 25;

% "nlcon" should return [c, ceq] with c(x) <= 0 and ceq(x) = 0
% so we need to negate the inequality constraint above
nlcon = @(x)deal(-c2(x), ceq);

% Initial point
x0 = [2; 2; 2];

% No linear inequality contraint ("A*x <= b")
A = [];
b = [];

% Since the equality constraint "c1" is linear, specify it here ("Aeq*x = beq")
Aeq = [8 14 7];
beq = [56];

% lower and upper bounds
lb = zeros(3,1);
ub = [];

2.1. Getting started 19



Artelys Knitro Documentation, Release 11.0.0

% solver call
x = knitromatlab(obj, x0, A, b, Aeq, beq, lb, ub, nlcon);

Saving this code in a file example.m in the current folder and issuing example at the MATLAB prompt produces the
following output.

=======================================
Commercial License

Artelys Knitro 11.0.0
=======================================

Knitro presolve eliminated 0 variables and 0 constraints.

algorithm: 1
gradopt: 4
hessopt: 2
honorbnds: 1
maxit: 10000
outlev: 1
par_concurrent_evals: 0
Knitro changing bar_initpt from AUTO to 3.
Knitro changing bar_murule from AUTO to 4.
Knitro changing bar_penaltycons from AUTO to 1.
Knitro changing bar_penaltyrule from AUTO to 2.
Knitro changing bar_switchrule from AUTO to 2.
Knitro changing linesearch from AUTO to 1.
Knitro changing linsolver from AUTO to 2.

Problem Characteristics ( Presolved)
-----------------------
Objective goal: Minimize
Objective type: general
Number of variables: 3 ( 3)

bounded below only: 0 ( 0)
bounded above only: 0 ( 0)
bounded below and above: 3 ( 3)
fixed: 0 ( 0)
free: 0 ( 0)

Number of constraints: 2 ( 2)
linear equalities: 1 ( 1)
quadratic equalities: 0 ( 0)
gen. nonlinear equalities: 0 ( 0)
linear one-sided inequalities: 0 ( 0)
quadratic one-sided inequalities: 0 ( 0)
gen. nonlinear one-sided inequalities: 1 ( 1)
linear two-sided inequalities: 0 ( 0)
quadratic two-sided inequalities: 0 ( 0)
gen. nonlinear two-sided inequalities: 0 ( 0)

Number of nonzeros in Jacobian: 6 ( 6)
Number of nonzeros in Hessian: 6 ( 6)

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 9.36000000000049e+02
Final feasibility error (abs / rel) = 7.11e-15 / 5.47e-16
Final optimality error (abs / rel) = 1.21e-07 / 7.56e-09

20 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

# of iterations = 7
# of CG iterations = 0
# of function evaluations = 32
# of gradient evaluations = 0
Total program time (secs) = 0.01931 ( 0.019 CPU time)
Time spent in evaluations (secs) = 0.01341

===============================================================================

The objective function value is the same (about 936.0) as in the AMPL example. However, even though we solved
the same problem, things went quite differently behind the scenes in these two examples; as we will see in Section
Derivatives, AMPL provides derivatives to Knitro automatically, whereas in MATLAB the user must do it manually.
Since we did not provide these derivatives, Knitro had to approximate them. Note that with AMPL, there were 0 func-
tion evaluations. This is because the model only has linear and quadratic structure and AMPL is able to provide all this
structural information directly to Knitro so that Knitro does not callback to AMPL for any evaluations. If there were
more general nonlinear structure in the model, then Knitro would callback to AMPL to get these evaluations as well as
the evaluations of their derivatives. The MATLAB interface does not currently provide quadratic structure to Knitro, so
32 function evaluations are needed in the MATLAB example (extra function evaluations were needed to approximate
the first derivatives). On a large problem, this could have made a very significant difference in performance.

Additional examples

More examples are provided in the knitromatlab directory of the Knitro distribution.

2.1.3 Getting started with the callable library

Knitro is written in C and C++, with a well-documented application programming interface (API) defined in the file
knitro.h provided in the installation under the include directory.

The Knitro callable library is used to build a model in pieces while providing special structures to Knitro (e.g. linear
structures, quadratic structures), while providing callbacks to handle general, nonlinear structures. A typical sequence
of function calls looks as follows:

• KN_new(): create a new Knitro solver context pointer, allocating resources.

• KN_add_vars()/KN_add_cons()/KN_set_*bnds(): add basic problem information to Knitro.

• KN_add_*_linear_struct()/KN_add_*_quadratic_struct(): add special problem structures.

• KN_add_eval_callback(): add callback for nonlinear evaluations if needed.

• KN_set_cb_*(): set properties for nonlinear evaluation callbacks.

• KN_set_*_param(): set user options/parameters.

• KN_solve(): solve the problem.

• KN_free(): delete the Knitro context pointer, releasing allocated resources.

The example below shows how to use these function calls.

First example

Again, let us consider the toy example that we already solved twice, using AMPL and MATLAB. The C callable
library equivalent is the following (see exampleQCQP.c provided with the distribution in examples/C/).

2.1. Getting started 21



Artelys Knitro Documentation, Release 11.0.0

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "knitro.h"
4

5 /* main */
6 int main (int argc, char *argv[]) {
7 int i, nStatus, error;
8

9 /** Declare variables. */
10 KN_context *kc;
11 int n, m;
12 double x[3];
13 double xLoBnds[3] = {0, 0, 0};
14 double xInitVals[3] = {2.0, 2.0, 2.0};
15 /** Used to define linear constraint. */
16 int lconIndexVars[3] = { 0, 1, 2};
17 double lconCoefs[3] = {8.0, 14.0, 7.0};
18 /** Used to specify quadratic constraint. */
19 int qconIndexVars1[3] = { 0, 1, 2};
20 int qconIndexVars2[3] = { 0, 1, 2};
21 double qconCoefs[3] = {1.0, 1.0, 1.0};
22 /** Used to specify quadratic objective terms. */
23 int qobjIndexVars1[5] = { 0, 1, 2, 0, 0};
24 int qobjIndexVars2[5] = { 0, 1, 2, 1, 2};
25 double qobjCoefs[5] = {-1.0, -2.0, -1.0, -1.0, -1.0};
26 /** Solution information */
27 double objSol;
28 double feasError, optError;
29

30 /** Create a new Knitro solver instance. */
31 error = KN_new(&kc);
32 if (error) exit(-1);
33 if (kc == NULL)
34 {
35 printf ("Failed to find a valid license.\n");
36 return( -1 );
37 }
38

39 /** Illustrate how to override default options by reading from
40 * the knitro.opt file. */
41 error = KN_load_param_file (kc, "knitro.opt");
42 if (error) exit(-1);
43

44 /** Initialize Knitro with the problem definition. */
45

46 /** Add the variables and set their bounds and initial values.
47 * Note: unset bounds assumed to be infinite. */
48 n = 3;
49 error = KN_add_vars(kc, n, NULL);
50 if (error) exit(-1);
51 error = KN_set_var_lobnds_all(kc, xLoBnds);
52 if (error) exit(-1);
53 error = KN_set_var_primal_init_values_all(kc, xInitVals);
54 if (error) exit(-1);
55

56 /** Add the constraints and set their bounds. */
57 m = 2;
58 error = KN_add_cons(kc, m, NULL);

22 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

59 if (error) exit(-1);
60 error = KN_set_con_eqbnd(kc, 0, 56.0);
61 if (error) exit(-1);
62 error = KN_set_con_lobnd(kc, 1, 25.0);
63 if (error) exit(-1);
64

65 /** Add coefficients for linear constraint. */
66 error = KN_add_con_linear_struct_one (kc, 3, 0, lconIndexVars,
67 lconCoefs);
68 if (error) exit(-1);
69

70 /** Add coefficients for quadratic constraint */
71 error = KN_add_con_quadratic_struct_one (kc, 3, 1, qconIndexVars1,
72 qconIndexVars2, qconCoefs);
73 if (error) exit(-1);
74

75 /** Set minimize or maximize (if not set, assumed minimize) */
76 error = KN_set_obj_goal(kc, KN_OBJGOAL_MINIMIZE);
77 if (error) exit(-1);
78

79 /** Add constant value to the objective. */
80 error= KN_add_obj_constant(kc, 1000.0);
81 if (error) exit(-1);
82

83 /** Set quadratic objective structure. */
84 error = KN_add_obj_quadratic_struct (kc, 5, qobjIndexVars1,
85 qobjIndexVars2, qobjCoefs);
86 if (error) exit(-1);
87

88 /** Solve the problem.
89 *
90 * Return status codes are defined in "knitro.h" and described
91 * in the Knitro manual. */
92 nStatus = KN_solve (kc);
93

94 printf ("\n\n");
95 printf ("Knitro converged with final status = %d\n",
96 nStatus);
97

98 /** An example of obtaining solution information. */
99 error = KN_get_solution(kc, &nStatus, &objSol, x, NULL);

100 if (!error) {
101 printf (" optimal objective value = %e\n", objSol);
102 printf (" optimal primal values x = (%e, %e, %e)\n", x[0], x[1], x[2]);
103 }
104 error = KN_get_abs_feas_error (kc, &feasError);
105 if (!error)
106 printf (" feasibility violation = %e\n", feasError);
107 error = KN_get_abs_opt_error (kc, &optError);
108 if (!error)
109 printf (" KKT optimality violation = %e\n", optError);
110

111 /** Delete the Knitro solver instance. */
112 KN_free (&kc);
113

114 return( 0 );
115 }

2.1. Getting started 23



Artelys Knitro Documentation, Release 11.0.0

Note that the AMPL equivalent is much shorter and simpler (only a few lines of code). In both the AMPL example
and this example, the quadratic structure is passed directly to Knitro, so no callback evaluations are needed. However,
when there is more general nonlinear structure AMPL will often be more efficient since it is able to provide Knitro the
exact derivatives of all nonlinear functions automatically as needed. To achieve the same efficiency in C, we would
have to compute the derivatives manually, code them in C and input them to Knitro using a callback. We will show
how to do this in the chapter on Derivatives. However the callable library has the advantage of greater control (for
instance, on memory usage) and allows one to embed Knitro in a native application seamlessly.

The above example can be compiled and linked against the Knitro callable library with a standard C compiler. Its
output is the following.

1 =======================================
2 Commercial License
3 Artelys Knitro 11.0.0
4 =======================================
5

6 Knitro presolve eliminated 0 variables and 0 constraints.
7

8 The problem is identified as a QCQP.
9 Knitro changing algorithm from AUTO to 1.

10 Knitro changing bar_initpt from AUTO to 3.
11 Knitro changing bar_murule from AUTO to 4.
12 Knitro changing bar_penaltycons from AUTO to 1.
13 Knitro changing bar_penaltyrule from AUTO to 2.
14 Knitro changing bar_switchrule from AUTO to 2.
15 Knitro changing linesearch from AUTO to 1.
16 Knitro changing linsolver from AUTO to 2.
17

18 Problem Characteristics ( Presolved)
19 -----------------------
20 Objective goal: Minimize
21 Objective type: quadratic
22 Number of variables: 3 ( 3)
23 bounded below only: 3 ( 3)
24 bounded above only: 0 ( 0)
25 bounded below and above: 0 ( 0)
26 fixed: 0 ( 0)
27 free: 0 ( 0)
28 Number of constraints: 2 ( 2)
29 linear equalities: 1 ( 1)
30 quadratic equalities: 0 ( 0)
31 gen. nonlinear equalities: 0 ( 0)
32 linear one-sided inequalities: 0 ( 0)
33 quadratic one-sided inequalities: 1 ( 1)
34 gen. nonlinear one-sided inequalities: 0 ( 0)
35 linear two-sided inequalities: 0 ( 0)
36 quadratic two-sided inequalities: 0 ( 0)
37 gen. nonlinear two-sided inequalities: 0 ( 0)
38 Number of nonzeros in Jacobian: 6 ( 6)
39 Number of nonzeros in Hessian: 5 ( 5)
40

41 Iter Objective FeasError OptError ||Step|| CGits
42 -------- -------------- ---------- ---------- ---------- -------
43 0 9.760000e+02 1.300e+01
44 9 9.360000e+02 0.000e+00 1.515e-09 5.910e-05 0
45

46 EXIT: Locally optimal solution found.
47

24 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

48 Final Statistics
49 ----------------
50 Final objective value = 9.36000000015579e+02
51 Final feasibility error (abs / rel) = 0.00e+00 / 0.00e+00
52 Final optimality error (abs / rel) = 1.51e-09 / 9.47e-11
53 # of iterations = 9
54 # of CG iterations = 2
55 # of function evaluations = 0
56 # of gradient evaluations = 0
57 # of Hessian evaluations = 0
58 Total program time (secs) = 0.00207 ( 0.001 CPU time)
59 Time spent in evaluations (secs) = 0.00000
60

61 ===============================================================================
62

63

64 Knitro converged with final status = 0
65 optimal objective value = 9.360000e+02
66 optimal primal values x = (1.514577e-09, 1.484137e-14, 8.000000e+00)
67 feasibility violation = 0.000000e+00
68 KKT optimality violation = 1.514577e-09

Again, the solution value is the same (about 936.0), and the details of the log are similar (we used a different algorithm
in the AMPL example).

Further information

Another chapter of this documentation will be dedicated to the callable library (Callbacks), more specifically to the
communication mode between the solver and the user-supplied optimization problem.

The reference manual (Callable library API reference) also contains a comprehensive documentation of the Knitro
callable library API.

Finally, the file knitro.h contains many useful comments and can be used as an ultimate reference.

Additional examples

More C/C++ examples using the callable library are provided in the examples/C and examples/C++ directories
of the Knitro distribution.

2.1.4 Getting started with the object-oriented interface

The Knitro object-oriented interface provides an object-oriented wrapper around the Knitro callable library. The
interface is available in C++, C#, and Java. This document focuses on the C++ version of the interface. The interfaces
are the same in functionality, differing only in language syntax and data types used in functions (e.g., std::vector<>
in C++, IList<> in C#, and List<> in Java). Examples for each of the languages are available in the Knitro examples
folders.

The C++ object-oriented interface is a header-only interface. Complete source code for the interface is included with
Knitro for informational purposes. Usage requires including the knitro.h header within the include directory of
Knitro and linking against the appropriate Knitro library file within the lib directory of Knitro.

The object-oriented API is used to solve an optimization problem through a sequence of function calls:

2.1. Getting started 25



Artelys Knitro Documentation, Release 11.0.0

• KTRIProblem* instance: create an instance of the problem to be solved by Knitro. The class is user-
defined, inherits from the KTRIProblem class, and defines the problem characteristics.

• KTRSolver solver(instance): load the problem definition into the Knitro solver and check out a Kni-
tro license.

• solver.solve(): solve the problem, with output stored in the solver object.

The example below shows how to define a problem and class and use these function calls.

First example

The follwing defines the same toy problem solved using AMPL, MATLAB, and the callable library.

1 #include "KTRSolver.h"
2 #include "KTRProblem.h"
3 #include <iostream>
4

5 class ProblemExample : public knitro::KTRProblem {
6 private:
7 // objective properties
8 void setObjectiveProperties() {
9 setObjType(knitro::KTREnums::ObjectiveType::ObjGeneral);

10 setObjGoal(knitro::KTREnums::ObjectiveGoal::Minimize);
11 }
12

13 // variable bounds. All variables 0 <= x.
14 void setVariableProperties() {
15 setVarLoBnds(0.0);
16 }
17

18 // constraint properties
19 void setConstraintProperties() {
20 // set constraint types
21 setConTypes(0, knitro::KTREnums::ConstraintType::ConGeneral);
22 setConTypes(1, knitro::KTREnums::ConstraintType::ConGeneral);
23

24 // set constraint lower bounds to zero for all variables
25 setConLoBnds(0.0);
26

27 // set constraint upper bounds
28 setConUpBnds(0, 0.0);
29 setConUpBnds(1, KTR_INFBOUND);
30 }
31

32 public:
33 // constructor: pass number of variables and constraints to base class.
34 // 3 variables, 2 constraints.
35 ProblemExample() : KTRProblem(3, 2) {
36 // set problem properties in constructor
37 setObjectiveProperties();
38 setVariableProperties();
39 setConstraintProperties();
40 }
41

42 // Objective and constraint evaluation function
43 // overrides KTRIProblem class
44 double evaluateFC(

26 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

45 const std::vector<double>& x,
46 std::vector<double>& c,
47 std::vector<double>& objGrad,
48 std::vector<double>& jac) {
49

50 // constraints
51 c[0] = 8.0e0*x[0] + 14.0e0*x[1] + 7.0e0*x[2] - 56.0e0;
52 c[1] = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] - 25.0e0;
53

54 // return objective function value
55 return 1000 - x[0] * x[0] - 2.0e0*x[1] * x[1] - x[2] * x[2]
56 - x[0] * x[1] - x[0] * x[2];
57 }
58 };
59

60 int main(int argc, char *argv[]) {
61 // Create a problem instance.
62 ProblemExample* problem = new ProblemExample();
63

64 // Create a solver - optional arguments: use numerical derivative evaluation.
65 knitro::KTRSolver solver(problem, KTR_GRADOPT_FORWARD, KTR_HESSOPT_BFGS);
66

67 int solveStatus = solver.solve();
68

69 if (solveStatus != 0) {
70 std::cout << std::endl;
71 std::cout << "Knitro failed to solve the problem, final status = ";
72 std::cout << solveStatus << std::endl;
73 }
74 else {
75 std::cout << std::endl << "Knitro successful, objective is = ";
76 std::cout << solver.getObjValue() << std::endl;
77 }
78

79 return 0;
80 }

This is similar to the callable library example. The problem definition is contained in a class definition and is simpler.
Variable and constraint properties can be defined more compactly; memory for the problem characteristics does not
need to be allocated by the user; and the Jacobian sparsity pattern is automatically defined as a full matrix because no
Jacobian non-zero size is provided.

The Knitro solver functions are called from the KTRSolver class. Like the callable library, the object-oriented inter-
face does not provide automatic derivatives. Derivatives can be computed manually and defined in the KTRProblem
class. This is covered in the chapter on Derivatives.

The above example can be compiled and linked against Knitro, and produces the same output as the callable library
output. As in the callable library, this requires more problem definition than AMPL, such as defining the variable and
constraint types. The object-oriented interface provide ease-of-use over the callable library with similar functionality
and performance.

Further information

Another chapter of this documentation is dedicated to the object-oriented interface (Object-oriented interface refer-
ence). The reference manual chapter on the callable library (Callable library API reference) provides information on
the callable library underlying the object-oriented interface. This section provides a comprehensive documentation of
the Knitro callable library functions, which are accessible through methods of the KTRSolver class.

2.1. Getting started 27



Artelys Knitro Documentation, Release 11.0.0

Finally, the source code for the object-oriented interface is provided as a reference. The .h header files for the C++
interface document the interface functionality.

Additional examples

More examples using the object-oriented interface are provided in the examples/C++, examples/CSharp and
examples/Java directories of the Knitro distribution.

2.1.5 Getting started with R

The Knitro interface for R, called KnitroR, is provided with your Knitro distribution. In order to install it, you need R
3.0 or later and run the following command in the R prompt:

install.packages('KnitroR', repos= NULL)

Do not forget to define an environment variable KNITRODIR pointing to your local installation directory of Knitro.

To test whether your installation is correct, type in the expression:

knitro(objective=function(x) x[1]*x[2], x0=c(1,1))

at the R command prompt. If your installation was successful, KnitroR returns the following message:

$statusMessage
[1] "Optimal solution found !"
$x
[1] 0 0
$lambda
[1] 0 0
$objective
[1] 0
$constraints
numeric(0)
$iter
[1] 1
$objEval
[1] 9
$gradEval
[1] 0

If Knitro is found and called but returns an error, it probably means that no license was found. In any of these situations,
please see Troubleshooting.

The KnitroR interface

The Knitro solver can be called via the following optimization function:

sol <- knitro(nvar=..., ncon=..., x0=...,
objective=..., gradient=..., constraints=...,
jacobian=..., jacIndexCons=..., jacIndexVars=...,
hessianLag=..., hessIndexRows=..., hessIndexCols=...,
xL=..., xU=..., cL=..., cU=...,
options=...)

but the simplest function call reduces to:

28 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

sol <- knitro(objective=..., x0=...)
sol <- knitro(objective=..., xL=...)
sol <- knitro(objective=..., xU=...)
sol <- knitro(nvar=..., objective=...)

First R example

The following introductory examples shows how to solve the Rosenbrock banana function.

library('KnitroR')

# Rosenbrock Banana function
eval_f <- function(x) {

return( 100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2 )
}

eval_grad_f <- function(x) {
grad_f <-rep(0, length(x))

grad_f[1] <- 2*x[1]-2+400*x[1]^3-400*x[1]*x[2]
grad_f[2] <- 200*(x[2]-x[1]^2)

return( grad_f )
}

# initial values
x0 <- c( -1.2, 1 )

sol <- knitro(x0 = x0, objective = eval_f)

We can save this code in a file ‘example.R’ and run it from the R command prompt via the following command:

source('example.R')

KnitroR returns the following output:

=======================================
Commercial License

Artelys Knitro 10.0.1
=======================================

Knitro performing finite-difference gradient computation with 1 thread.
Knitro presolve eliminated 0 variables and 0 constraints.

gradopt: 2
hessopt: 2
outlev: 1
par_concurrent_evals: 0
The problem is identified as unconstrained.
Knitro changing algorithm from AUTO to 1.
Knitro changing bar_initpt from AUTO to 3.
Knitro changing bar_murule from AUTO to 4.
Knitro changing bar_penaltycons from AUTO to 1.
Knitro changing bar_penaltyrule from AUTO to 2.
Knitro changing bar_switchrule from AUTO to 1.
Knitro changing linsolver from AUTO to 2.

2.1. Getting started 29



Artelys Knitro Documentation, Release 11.0.0

Knitro performing finite-difference gradient computation with 1 thread.

Problem Characteristics ( Presolved)
-----------------------
Objective goal: Minimize
Number of variables: 2 ( 2)

bounded below: 0 ( 0)
bounded above: 0 ( 0)
bounded below and above: 0 ( 0)
fixed: 0 ( 0)
free: 2 ( 2)

Number of constraints: 0 ( 0)
linear equalities: 0 ( 0)
nonlinear equalities: 0 ( 0)
linear inequalities: 0 ( 0)
nonlinear inequalities: 0 ( 0)
range: 0 ( 0)

Number of nonzeros in Jacobian: 0 ( 0)
Number of nonzeros in Hessian: 3 ( 3)

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 2.00430825877435e-011
Final feasibility error (abs / rel) = 0.00e+000 / 0.00e+000
Final optimality error (abs / rel) = 1.66e-007 / 1.66e-007
# of iterations = 36
# of CG iterations = 5
# of function evaluations = 134
# of gradient evaluations = 0
Total program time (secs) = 0.069 ( 0.000 CPU time)
Time spent in evaluations (secs) = 0.001

===============================================================================

Further information

More functions are availables and R interface can be used to solve MINLP and least squares problems as well. Another
chapter of this documentation is dedicated to the R interface (Knitro / R reference) and provides exhaustive references.

Any Knitro option can also be provided to the R interface. A comprehensive documentation of Knitro options is
available in the section Knitro user options.

Additional examples

More examples using the R interface are provided in the examples/R directory of the Knitro distribution.

2.2 Setting options

Knitro offers a number of user options for modifying behavior of the solver. Each option takes a value that may be
an integer, double precision number, or character string. Options are usually identified by a string name (for example,
algorithm), but programmatic interfaces also identify options by an integer value associated with a C language

30 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

macro defined in the file knitro.h. (for example, KN_PARAM_ALG). Most user options can be specified with either
a numeric value or a string value.

Note: The naming convention is that user options beginning with bar_ apply only to the barrier/interior-point
algorithms; options beginning with act_ apply only to the active-set/SQP algorithms; options beginning with mip_
apply only to the mixed integer programming (MIP) solvers; options beginning with ms_ apply only to the multi-start
procedure; and options specific to the multi-algorithm procedure begin with ma_. Options specific to parallel features
begin with par_.

2.2.1 Setting Knitro options within AMPL

We have seen how to specify user options, for example:

ampl: option knitro_options "alg=2 bar_maxcrossit=2 outlev=1";

A complete list of Knitro options that are available in AMPL can be shown by typing:

knitroampl -=

The output produced by this command, along with a description of each option, is provided in Section Knitro / AMPL
reference.

Note: When specifying multiple options, all options must be set with one knitro_options command as shown
in the example above. If multiple knitro_options commands are specified in an AMPL session, only the last one
will be read.

When running knitroampl directly with an AMPL file, user options can be set on the command line as follows:

knitroampl testproblem.nl maxit=100 opttol=1.0e-5

2.2.2 Setting Knitro options with MATLAB

There are two ways knitromatlab can read user options: either using the fmincon format (explained in the MATLAB
documentation), or using the Knitro options file (explained below). If both types of options are used, Knitro options
override fmincon format options.

The Knitro option file is a simple text file that contains, on each line, the name of a Knitro option and its value. For
instance, the content of the file could be:

algorithm auto
bar_directinterval 10
bar_feasible no

Assuming that the Knitro options file is named knitro.opt and is stored in the current directory, and that the
fmincon-format options structure is named KnitroOptions, the call to knitromatlab would be:

[x fval] = ...
knitromatlab(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,extendedFeatures,KnitroOptions, ...

'knitro.opt')

2.2. Setting options 31



Artelys Knitro Documentation, Release 11.0.0

The Knitro options file is a general mechanism to pass options to Knitro. It can also be used with the callable library
interface, but is most useful with the Knitro/MATLAB interface for which it is the only way to set many of the available
options.

2.2.3 Setting Knitro options with the callable library

The functions for setting user options have the form:

int KN_set_int_param (KN_context *kc, int param_id, int value)

for setting integer valued parameters, or:

int KN_set_double_param (KN_context *kc, int param_id, double value)

for setting double precision valued parameters.

For example, to specify the Interior/CG algorithm and a tight optimality stop tolerance:

status = KN_set_int_param (kc, KN_PARAM_ALG, KN_ALG_BAR_CG);
status = KN_set_double_param (kc, KN_PARAM_OPTTOL, 1.0e-8);

Refer to the Callable Library Reference Manual (Changing and reading solver parameters) for a comprehensive list.

2.2.4 Setting KNITRO options with the object-oriented interface

User options are set with a single overloaded KTRSolver function that has the form:

void solver.setParam(param_identifier, param_value);

The argument param_identifier is either a string with the parameter’s name or an integer with the parame-
ter’s identifier number (enumerated object with all options have been defined to simplify this step). The argument
param_value is an integer, double, or string, depending on the type of parameter that is set.

For example, to specify the Interior/CG algorithm and a tight optimality stop tolerance:

solver.setParam(KTR_PARAM_ALG, KTR_ALG_BAR_CG);
solver.setParam(KTR_PARAM_OPTTOL, 1.0e-8);

Refer to the Callable Library Reference Manual (Changing and reading solver parameters) for a comprehensive list
of parameters. The object-oriented interface uses the same parameters as the callable library.

2.2.5 The Knitro options file

The Knitro options file allows the user to easily change user options by editing a text file, instead of modifying
application code.

Options are set by specifying a keyword and a corresponding value on a line in the options file. Lines that begin with
a “#” character are treated as comments and blank lines are ignored. For example, to set the maximum allowable
number of iterations to 500, you could create the following options file:

# Knitro Options file
maxit 500

MATLAB users may simply pass the name of the Knitro options file to knitromatlab as demonstrated in Getting started
with MATLAB. When using the callable library, the options file is read into Knitro by calling the following function:

32 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

int KN_load_param_file (KN_context *kc, char const *filename)

For example, if the options file is named myoptions.opt:

status = KN_load_param_file (kc, "myoptions.opt");

The full set of options used by Knitro in a given solve may be written to a text file through the function call:

int KN_save_param_file (KN_context *kc, char const *filename)

For example:

status = KN_save_param_file (kc, "knitro.opt");

A sample options file knitro.opt is provided for convenience and can be found in the examples/C di-
rectory. Note that this file is only read by application drivers that call KN_load_param_file(), such as
examples/C/exampleNLP1.c.

In the object oriented interface, the equivalent functions for loading and saving parameter files are the following:

void KTRSolver::loadParamFile(std::string filename);
void KTRSolver::saveParamFile(std::string filename);

2.3 Derivatives

Applications should provide partial first derivatives whenever possible, to make Knitro more efficient and more ro-
bust. If first derivatives cannot be supplied, then the application should instruct Knitro to calculate finite-difference
approximations.

First derivatives are represented by the gradient of the objective function and the Jacobian matrix of the constraints.
Second derivatives are represented by the Hessian matrix, a linear combination of the second derivatives of the objec-
tive function and the constraints.

2.3.1 First derivatives

The default version of Knitro assumes that the user can provide exact first derivatives to compute the objective function
gradient and constraint gradients. It is highly recommended that the user provide exact first derivatives if at all possible,
since using first derivative approximations may seriously degrade the performance of the code and the likelihood of
converging to a solution. However, if this is not possible the following first derivative approximation options may be
used.

• Forward finite-differences This option uses a forward finite-difference approximation of the objective and con-
straint gradients. The cost of computing this approximation is n function evaluations (where n is the number of
variables). The option is invoked by choosing user option gradopt = 2.

• Centered finite-differences This option uses a centered finite-difference approximation of the objective and con-
straint gradients. The cost of computing this approximation is 2n function evaluations (where n is the number of
variables). The option is invoked by choosing user option gradopt = 3. The centered finite-difference approx-
imation is often more accurate than the forward finite-difference approximation; however, it is more expensive
to compute if the cost of evaluating a function is high.

2.3. Derivatives 33



Artelys Knitro Documentation, Release 11.0.0

Note: When using finite-difference gradients, the sparsity patten for the constraint Jacobian should still be provided
if possible to improve the efficiency of the finite-difference computation and decrease the memory requirements.

Although these finite-differences approximations should be avoided in general, they are useful to track errors: when-
ever the derivatives are provided by the user, it is useful to check that the differentiation (and the subsequent implemen-
tation of the derivatives) is correct. Indeed, providing derivatives that are not coherent with the function values is one
of the most common errors when solving a nonlinear program. This check can be done automatically by comparing
finite-differences approximations with user-provided derivatives. This is explained below (Checking derivatives).

2.3.2 Second derivatives

The default version of Knitro assumes that the application can provide exact second derivatives to compute the Hessian
of the Lagrangian function. If the application is able to do so and the cost of computing the second derivatives is not
overly expensive, it is highly recommended to provide exact second derivatives. However, Knitro also offers other
options which are described in detail below.

• (Dense) Quasi-Newton BFGS:

The quasi-Newton BFGS option uses gradient information to compute a symmetric, positive-definite approxi-
mation to the Hessian matrix. Typically this method requires more iterations to converge than the exact Hessian
version. However, since it is only computing gradients rather than Hessians, this approach may be more efficient
in some cases. This option stores a dense quasi-Newton Hessian approximation so it is only recommended for
small to medium problems (e.g., n < 1000). The quasi-Newton BFGS option is chosen by setting user option
hessopt = 2.

• (Dense) Quasi-Newton SR1:

As with the BFGS approach, the quasi-Newton SR1 approach builds an approximate Hessian using gradient
information. However, unlike the BFGS approximation, the SR1 Hessian approximation is not restricted to be
positive-definite. Therefore the quasi-Newton SR1 approximation may be a better approach, compared to the
BFGS method, if there is a lot of negative curvature in the problem (i.e., the problem is not convex) since it may
be able to maintain a better approximation to the true Hessian in this case. The quasi-Newton SR1 approximation
maintains a dense Hessian approximation and so is only recommended for small to medium problems (e.g., n <
1000). The quasi-Newton SR1 option is chosen by setting user option hessopt = 3.

• Finite-difference Hessian-vector product option:

If the problem is large and gradient evaluations are not a dominant cost, then Knitro can internally compute
Hessian-vector products using finite-differences. Each Hessian-vector product in this case requires one addi-
tional gradient evaluation. This option is chosen by setting user option hessopt = 4. The option is only
recommended if the exact gradients are provided.

Note: This option may not be used when algorithm = 1 or 4 since the Interior/Direct and SQP algorithms need
the full expression of the Hessian matrix (Hessian-vector products are not sufficient).

• Exact Hessian-vector products:

In some cases the application may prefer to provide exact Hessian-vector products, but not the full Hessian
(for instance, if the problem has a large, dense Hessian). The application must provide a routine which, given
a vector v (stored in hessVector), computes the Hessian-vector product, H*v, and returns the result (again in
hessVector). This option is chosen by setting user option hessopt = 5.

34 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

Note: This option may not be used when algorithm = 1 or 4 since, as mentioned above, the Interior/Direct and
SQP algorithms need the full expression of the Hessian matrix (Hessian-vector products are not sufficient).

• Limited-memory Quasi-Newton BFGS:

The limited-memory quasi-Newton BFGS option is similar to the dense quasi-Newton BFGS option described
above. However, it is better suited for large-scale problems since, instead of storing a dense Hessian approx-
imation, it stores only a limited number of gradient vectors used to approximate the Hessian. The number of
gradient vectors used to approximate the Hessian is controlled by user option lmsize.

A larger value of lmsize may result in a more accurate, but also more expensive, Hessian approximation. A
smaller value may give a less accurate, but faster, Hessian approximation. When using the limited memory
BFGS approach it is recommended to experiment with different values of this parameter (e.g. between 5 and
15).

In general, the limited-memory BFGS option requires more iterations to converge than the dense quasi-Newton
BFGS approach, but will be much more efficient on large-scale problems. The limited-memory quasi-Newton
option is chosen by setting user option hessopt = 6.

Note: When using a Hessian approximation option (i.e. hessopt > 1), you do not need to provide any sparsity
pattern for the Hessian matrix.

As with exact first derivatives, exact second derivatives often provide a substantial benefit to Knitro and it is advised
to provide them whenever possible. If the exact second derivative (i.e. the Hessian) matrix is provided by the user, it
can (and should) be checked against a finite-difference approximation for errors using the Knitro derivative checker.
See (Checking derivatives) below.

2.3.3 Jacobian and Hessian derivative matrices

The Jacobian matrix of the constraints is defined as

𝐽(𝑥) =
[︀
∇𝑐0(𝑥) . . . ∇𝑐𝑚−1(𝑥)

]︀
and the Hessian matrix of the Lagrangian is defined as

𝐻(𝑥, 𝜆) = 𝜎∇2𝑓(𝑥) +

𝑚−1∑︁
𝑖=0

𝜆𝑖∇2𝑐𝑖(𝑥)

where 𝜆 is the vector of Lagrange multipliers (dual variables), and 𝜎 is a scalar (either 0 or 1) for the objective
component of the Hessian that was introduced in Knitro 8.0.

Note: For backwards compatibility with older versions of Knitro, the user can always assume that 𝜎 = 1 if the user
option hessian_no_f=0 (which is the default setting). However, if hessian_no_f=1, then Knitro will provide
a status flag to the user when it needs a Hessian evaluation indicating whether the Hessian should be evaluated with
𝜎 = 0 or 𝜎 = 1. The user must then evaluate the Hessian with the proper value of 𝜎 based on this status flag. Setting
hessian_no_f=1 and computing the Hessian with the requested value of 𝜎 may improve Knitro efficiency in some
cases. Examples of how to do this can be found in the examples/C directory.

2.3. Derivatives 35



Artelys Knitro Documentation, Release 11.0.0

Example

Assume we want to use Knitro to solve the following problem:

min 𝑥0 + 𝑥1𝑥
3
2

subject to:
cos(𝑥0) = 0.5

3 ≤ 𝑥2
0 + 𝑥2

1 ≤ 8

𝑥0 + 𝑥1 + 𝑥2 ≤10

𝑥0, 𝑥1, 𝑥2 ≥ 1.

Rewriting in the Knitro standard notation, we have

𝑓(𝑥) = 𝑥0 + 𝑥1𝑥
3
2

𝑐0(𝑥) = cos(𝑥0)

𝑐1(𝑥) = 𝑥2
0 + 𝑥2

1

𝑐2(𝑥) = 𝑥0 + 𝑥1 + 𝑥2.

Note: For demonstration purposes we show how to compute the Jacobian and Hessian corresponding to all constraints
and components of this model. However, with the new API introduced in Knitro 11.0 the quadratic constraint 𝑐1 and
the linear constraint 𝑐2 should be loaded separately and should not be included in the sparse Jacobian or Hessian
structures provided through the nonlinear callbacks. In addition, the linear term in the objective could also be provided
separately if desired.

Note: Please see the examples provided in examples/C/ which demonstrate how to provide the derivatives (e.g.
objective gradient, constraint Jacobian, and Hessian) for nonlinear terms via callbacks for different types of models,
while loading linear and quadratic structures separately.

Computing the Sparse Jacobian Matrix

The gradients (first derivatives) of the objective and constraint functions are given by

∇𝑓(𝑥) =

⎡⎣ 1
𝑥3
2

3𝑥1𝑥
2
2

⎤⎦ ,∇𝑐0(𝑥) =

⎡⎣− sin(𝑥0)
0
0

⎤⎦ ,∇𝑐1(𝑥) =

⎡⎣2𝑥0

2𝑥1

0

⎤⎦ ,∇𝑐2(𝑥) =

⎡⎣11
1

⎤⎦ .

The constraint Jacobian matrix 𝐽(𝑥) is the matrix whose rows store the (transposed) constraint gradients, i.e.,

𝐽(𝑥) =

⎡⎣∇𝑐0(𝑥)
𝑇

∇𝑐1(𝑥)
𝑇

∇𝑐2(𝑥)
𝑇

⎤⎦ =

⎡⎣− sin(𝑥0) 0 0
2𝑥0 2𝑥1 0
1 1 1

⎤⎦ .

The values of 𝐽(𝑥) depend on the value of 𝑥 and change during the solution process. The indices specifying the
nonzero elements of this matrix remain constant and are set in KN_set_cb_grad() by the values of jacIndexCons
and jacIndexVars.

36 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

Computing the Sparse Hessian Matrix

For the example above, the Hessians (second derivatives) of the objective function is given by

∇2𝑓(𝑥) =

⎡⎣0 0 0
0 0 3𝑥2

2

0 3𝑥2
2 6𝑥1𝑥2

⎤⎦ ,

and the Hessians of constraints are given by

∇2𝑐0(𝑥) =

⎡⎣− cos(𝑥0) 0 0
0 0 0
0 0 0

⎤⎦ ,∇2𝑐1(𝑥) =

⎡⎣2 0 0
0 2 0
0 0 0

⎤⎦ ,∇2𝑐2(𝑥) =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ .

Scaling the objective matrix by 𝜎, and the constraint matrices by their corresponding Lagrange multipliers and sum-
ming, we get

𝐻(𝑥, 𝜆) =

⎡⎣−𝜆0 cos(𝑥0) + 2𝜆1 0 0
0 2𝜆1 𝜎3𝑥2

2

0 𝜎3𝑥2
2 𝜎6𝑥1𝑥2

⎤⎦ .

The values of 𝐻(𝑥, 𝜆) depend on the value of 𝑥 and 𝜆 (and 𝜎, which is either 0 or 1) and change during the solution pro-
cess. The indices specifying the nonzero elements of this matrix remain constant and are set in KN_set_cb_hess()
by the values of hessIndexVars1 and hessIndexVars2.

2.3.4 Inputing derivatives

MATLAB users can provide the Jacobian and Hessian matrices in standard MATLAB format, either dense or sparse.
See the fmincon documentation, http://www.mathworks.com/help/optim/ug/writing-constraints.html#brhkghv-16, for
more information. Users of the callable library must provide derivatives to Knitro in sparse format. In the above
example, the number of nonzero elements nnzJ in J(x) is 6, and these arrays would be specified as follows (here in
column-wise order, but the order is arbitrary) using the callable library.

jac[0] = -sin(x[0]); jacIndexCons[0] = 0; jacIndexVars[0] = 0;
jac[1] = 2*x[0]; jacIndexCons[1] = 1; jacIndexVars[1] = 0;
jac[2] = 1; jacIndexCons[2] = 2; jacIndexVars[2] = 0;
jac[3] = 2*x[1]; jacIndexCons[3] = 1; jacIndexVars[3] = 1;
jac[4] = 1; jacIndexCons[4] = 2; jacIndexVars[4] = 1;
jac[5] = 1; jacIndexCons[5] = 2; jacIndexVars[5] = 2;

In the object-oriented interface, these values are set in the user-defined problem class by implementing:

std::vector<int> KTRIProblem::getJacIndexCons();
std::vector<int> KTRIProblem::getJacIndexVars();

to return vectors with the constraint and variable indices in either column-wise or row-wise order. If using the
KTRProblem class, setting the values with:

KTRProblem::setJacIndexCons(int id, int val);
KTRProblem::setJacIndexVars(int id, int val);

will store the values to be returned by the appropriate get functions.

Note: Using KTRPProblem class, by default the Jacobian is assumed to be dense and stored row-wise.

2.3. Derivatives 37

http://www.mathworks.com/help/optim/ug/writing-constraints.html#brhkghv-16


Artelys Knitro Documentation, Release 11.0.0

Note: Even if the application does not evaluate derivatives (i.e. finite-difference first derivatives are used), it must
still provide a sparsity pattern for the constraint Jacobian matrix that specifies which partial derivatives are nonzero.
Knitro uses the sparsity pattern to speed up linear algebra computations.

Note: When using finite-difference first derivatives (gradopt > 1), if the sparsity pattern is unknown, then the
application should specify a fully dense pattern (i.e., assume all partial derivatives are nonzero). This can easily and
automatically be done by setting nnzJ to either KN_DENSE_ROWMAJOR or KN_DENSE_ROWMAJOR in the callable
library function KN_set_cb_grad() (and setting jacIndexCons and jacIndexVars to be NULL).

Since the Hessian matrix will always be a symmetric matrix, Knitro only stores the nonzero elements corresponding
to the upper triangular part (including the diagonal). In the example here, the number of nonzero elements in the
upper triangular part of the Hessian matrix nnzH is 4. The Knitro array hess stores the values of these elements, while
the arrays hessIndexVars1 and hessIndexVars2 store the row and column indices respectively. The order in which
these nonzero elements is stored is not important. If we store them column-wise, the arrays hess, hessIndexVars1 and
hessIndexVars2 are as follows:

hess[0] = -lambda[0]*cos(x[0]) + 2*lambda[1];
hessIndexVars1[0] = 0;
hessIndexVars2[0] = 0;

hess[1] = 2*lambda[1];
hessIndexVars1[1] = 1;
hessIndexVars2[1] = 1;

hess[2] = sigma*3*x[2]*x[2];
hessIndexVars1[2] = 1;
hessIndexVars2[2] = 2;

hess[3] = sigma*6*x[1]*x[2];
hessIndexVars1[3] = 2;
hessIndexVars2[3] = 2;

In the object-oriented interface, the Hessian matrix column indices are set in the user-defined problem class by imple-
menting:

std::vector<int> KTRProblem::getHessIndexRows();
std::vector<int> KTRProblem::getHessIndexCols();

and having them return vectors with the Hessian row and column indices, respectively. If using the KTRProblem
class, setting the values with:

KTRProblem::setHessIndexRows(int id, int val);
KTRProblem::setHessIndexCols(int id, int val);

will store the values to be returned by the appropriate get functions.

Note: In Knitro, the array objGrad corresponding to ∇𝑓(𝑥), can be provided in dense or sparse form. The arrays jac,
jacIndexCons, and jacIndexVars store information concerning only the nonzero (and typically nonlinear) elements of
J(x). The array jac stores the nonzero values in J(x) evaluated at the current solution estimate x, jacIndexCons stores
the constraint function (or row) indices corresponding to these values, and jacIndexVars stores the variable (or column)
indices. There is no restriction on the order in which these elements are stored; however, it is common to store the
nonzero elements of J(x) in either row-wise or column-wise fashion.

38 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

2.3.5 MATLAB example

Let us modify our example from Getting started with MATLAB so that the first derivatives are provided as well. In
MATLAB, you only need to provide the derivatives for the nonlinear functions, whereas in the callable library API
you need to provide the derivatives for both linear and nonlinear constraints in 𝐽(𝑥). In the example below, only the
inequality constraint is nonlinear, so we only provide the derivative for this constraint.

function firstDer()

function [f, g] = obj(x)
f = 1000 - x(1)^2 - 2*x(2)^2 - x(3)^2 - x(1)*x(2) - x(1)*x(3);
if nargout == 2

g = [-2*x(1) - x(2) - x(3); - 4*x(2) - x(1); -2*x(3) - x(1)];
end

end

% nlcon should return [c, ceq, GC, GCeq]
% with c(x) <= 0 and ceq(x) = 0
function [c, ceq, GC, GCeq] = nlcon(x)

c = -(x(1)^2 + x(2)^2 + x(3)^2 - 25);
ceq = [];
if nargout==4

GC = -([2*x(1); 2*x(2); 2*x(3)]);
GCeq = [];

end
end

x0 = [2; 2; 2];
A = []; b = []; % no linear inequality constraints ("A*x <= b")
Aeq = [8 14 7]; beq = [56]; % linear equality constraints ("Aeq*x = beq")
lb = zeros(3,1); ub = []; % lower and upper bounds

options = optimset('GradObj', 'on', 'GradConstr', 'on');
knitromatlab(@obj, x0, A, b, Aeq, beq, lb, ub, @nlcon, [], options);

end

The only difference with the derivative-free case is that the code that computes the objective function and the con-
straints also returns the first derivatives along with function values. The output is as follows.

=======================================
Commercial License

Artelys Knitro 11.0.0
=======================================

Knitro presolve eliminated 0 variables and 0 constraints.

algorithm: 1
gradopt: 4
hessopt: 2
honorbnds: 1
maxit: 10000
outlev: 1
par_concurrent_evals: 0
Knitro changing bar_initpt from AUTO to 3.
Knitro changing bar_murule from AUTO to 4.
Knitro changing bar_penaltycons from AUTO to 1.
Knitro changing bar_penaltyrule from AUTO to 2.

2.3. Derivatives 39



Artelys Knitro Documentation, Release 11.0.0

Knitro changing bar_switchrule from AUTO to 2.
Knitro changing linsolver from AUTO to 2.

Problem Characteristics ( Presolved)
-----------------------
Objective goal: Minimize
Objective type: general
Number of variables: 3 ( 3)

bounded below only: 0 ( 0)
bounded above only: 0 ( 0)
bounded below and above: 3 ( 3)
fixed: 0 ( 0)
free: 0 ( 0)

Number of constraints: 2 ( 2)
linear equalities: 1 ( 1)
quadratic equalities: 0 ( 0)
gen. nonlinear equalities: 0 ( 0)
linear one-sided inequalities: 0 ( 0)
quadratic one-sided inequalities: 0 ( 0)
gen. nonlinear one-sided inequalities: 1 ( 1)
linear two-sided inequalities: 0 ( 0)
quadratic two-sided inequalities: 0 ( 0)
gen. nonlinear two-sided inequalities: 0 ( 0)

Number of nonzeros in Jacobian: 6 ( 6)
Number of nonzeros in Hessian: 6 ( 6)

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 9.36000000000049e+02
Final feasibility error (abs / rel) = 0.00e+00 / 0.00e+00
Final optimality error (abs / rel) = 4.78e-08 / 2.99e-09
# of iterations = 7
# of CG iterations = 0
# of function evaluations = 8
# of gradient evaluations = 8
Total program time (secs) = 0.01651 ( 0.015 CPU time)
Time spent in evaluations (secs) = 0.00472

===============================================================================

The number of function evaluation was reduced to 8, simply by providing exact first derivatives. This small example
shows the practical importance of being able to provide exact derivatives; since (unlike modeling environments like
AMPL) MATLAB does not provide automatic differentiation, the user must compute these derivatives analytically
and then code them manually as in the above example.

2.3.6 C/C++ example

Let us show how to provide derivatives through the callable library API. Here we look at the C example
examples/C/exampleNLP2.c, which solves the model:

max x0*x1*x2*x3 (obj)
s.t. x0^3 + x1^2 = 1 (c0)

x0^2*x3 - x2 = 0 (c1)

40 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

x3^2 - x1 = 0 (c2)

Note that this problem has linear terms, quadratic terms and general nonlinear terms. We will show how to provide
both first and second derivatives for the nonlinear structure through callbacks while separately loading the linear and
quadratic structure.

#include <stdio.h>
#include <stdlib.h>
#include "knitro.h"

/** Callback for nonlinear function evaluations */
int callbackEvalFC (KN_context_ptr kc,

CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,
KN_eval_result_ptr const evalResult,
void * const userParams)

{
const double *x;
double *obj;
double *c;

if (evalRequest->type != KN_RC_EVALFC)
{

printf ("*** callbackEvalFC incorrectly called with eval type %d\n",
evalRequest->type);

return( -1 );
}
x = evalRequest->x;
obj = evalResult->obj;
c = evalResult->c;

/** Evaluate nonlinear term in objective */

*obj = x[0]*x[1]*x[2]*x[3];

/** Evaluate nonlinear terms in constraints */
c[0] = x[0]*x[0]*x[0];
c[1] = x[0]*x[0]*x[3];

return( 0 );
}

/** Callback for nonlinear gradient/Jacobian evaluations */
int callbackEvalGA (KN_context_ptr kc,

CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,
KN_eval_result_ptr const evalResult,
void * const userParams)

{
const double *x;
double *objGrad;
double *jac;

if (evalRequest->type != KN_RC_EVALGA)
{

printf ("*** callbackEvalGA incorrectly called with eval type %d\n",
evalRequest->type);

return( -1 );

2.3. Derivatives 41



Artelys Knitro Documentation, Release 11.0.0

}
x = evalRequest->x;
objGrad = evalResult->objGrad;
jac = evalResult->jac;

/** Evaluate nonlinear term in objective gradient */
objGrad[0] = x[1]*x[2]*x[3];
objGrad[1] = x[0]*x[2]*x[3];
objGrad[2] = x[0]*x[1]*x[3];
objGrad[3] = x[0]*x[1]*x[2];

/** Evaluate nonlinear terms in constraint gradients (Jacobian) */
jac[0] = 3.0*x[0]*x[0]; /* derivative of x0^3 term wrt x0 */
jac[1] = 2.0*x[0]*x[3]; /* derivative of x0^2*x3 term wrt x0 */
jac[2] = x[0]*x[0]; /* derivative of x0^2*x3 terms wrt x3 */

return( 0 );
}

/** Callback for nonlinear Hessian evaluation */
int callbackEvalH (KN_context_ptr kc,

CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,
KN_eval_result_ptr const evalResult,
void * const userParams)

{
const double *x;
const double *lambda;
double sigma;
double *hess;

if ( evalRequest->type != KN_RC_EVALH
&& evalRequest->type != KN_RC_EVALH_NO_F )

{
printf ("*** callbackEvalHess incorrectly called with eval type %d\n",

evalRequest->type);
return( -1 );

}

x = evalRequest->x;
lambda = evalRequest->lambda;
/** Scale objective component of the Hessian by sigma */
sigma = *(evalRequest->sigma);
hess = evalResult->hess;

/** Evaluate nonlinear term in the Hessian of the Lagrangian */
hess[0] = lambda[0]*6.0*x[0] + lambda[1]*2.0*x[3];
hess[1] = sigma*x[2]*x[3];
hess[2] = sigma*x[1]*x[3];
hess[3] = sigma*x[1]*x[2] + lambda[1]*2.0*x[0];
hess[4] = sigma*x[0]*x[3];
hess[5] = sigma*x[0]*x[2];
hess[6] = sigma*x[0]*x[1];

return( 0 );
}

/** main function */

42 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

int main (int argc, char *argv[])
{

int i, nStatus, error;

/** Declare variables. */
KN_context *kc;
int n, m;
double cEqBnds[3] = {1.0, 0.0, 0.0};
/** Used to define linear constraint structure */
int lconIndexCons[2];
int lconIndexVars[2];
double lconCoefs[2];
/** Used to define quadratic constraint structure */
int qconIndexCons[2];
int qconIndexVars1[2];
int qconIndexVars2[2];
double qconCoefs[2];
/** Pointer to structure holding information for nonlinear

* evaluation callback for terms:

* x0*x1*x2*x3 in the objective

* x0^3 in first constraint

* x0^2*x3 in second constraint */
CB_context *cb;
int cIndices[2];
/** Used to define Jacobian structure for nonlinear terms

* evaluated in the callback. */
int cbjacIndexCons[3];
int cbjacIndexVars[3];
double cbjacCoefs[3];
/** Used to define Hessian structure for nonlinear terms

* evaluated in the callback. */
int cbhessIndexVars1[7];
int cbhessIndexVars2[7];
double cbhessCoefs[7];
/** For solution information */
double x[4];
double objSol;
double feasError, optError;

/** Create a new Knitro solver instance. */
error = KN_new(&kc);
if (error) exit(-1);
if (kc == NULL)
{

printf ("Failed to find a valid license.\n");
return( -1 );

}

/** Initialize Knitro with the problem definition. */

/** Add the variables and specify initial values for them.

* Note: any unset lower bounds are assumed to be

* unbounded below and any unset upper bounds are

* assumed to be unbounded above. */
n = 4;
error = KN_add_vars(kc, n, NULL);
if (error) exit(-1);
for (i=0; i<n; i++) {

2.3. Derivatives 43



Artelys Knitro Documentation, Release 11.0.0

error = KN_set_var_primal_init_value(kc, i, 0.8);
if (error) exit(-1);

}

/** Add the constraints and set the rhs and coefficients */
m =3;
error = KN_add_cons(kc, m, NULL);
if (error) exit(-1);
error = KN_set_con_eqbnds_all(kc, cEqBnds);
if (error) exit(-1);

/** Coefficients for 2 linear terms */
lconIndexCons[0] = 1; lconIndexVars[0] = 2; lconCoefs[0] = -1.0;
lconIndexCons[1] = 2; lconIndexVars[1] = 1; lconCoefs[1] = -1.0;
error = KN_add_con_linear_struct (kc, 2,

lconIndexCons, lconIndexVars,
lconCoefs);

if (error) exit(-1);

/** Coefficients for 2 quadratic terms */

/* x1^2 term in c0 */
qconIndexCons[0] = 0; qconIndexVars1[0] = 1; qconIndexVars2[0] = 1;
qconCoefs[0] = 1.0;

/* x3^2 term in c2 */
qconIndexCons[1] = 2; qconIndexVars1[1] = 3; qconIndexVars2[1] = 3;
qconCoefs[1] = 1.0;

error = KN_add_con_quadratic_struct (kc, 2, qconIndexCons,
qconIndexVars1, qconIndexVars2,
qconCoefs);

if (error) exit(-1);

/** Add callback to evaluate nonlinear (non-quadratic) terms in the model:

* x0*x1*x2*x3 in the objective

* x0^3 in first constraint c0

* x0^2*x3 in second constraint c1 */
cIndices[0] = 0; cIndices[1] = 1;
error = KN_add_eval_callback (kc, KNTRUE, 2, cIndices, callbackEvalFC, &cb);
if (error) exit(-1);

/** Set obj. gradient and nonlinear jac provided through callbacks.

* Mark objective gradient as dense, and provide non-zero sparsity

* structure for constraint Jacobian terms. */
cbjacIndexCons[0] = 0; cbjacIndexVars[0] = 0;
cbjacIndexCons[1] = 1; cbjacIndexVars[1] = 0;
cbjacIndexCons[2] = 1; cbjacIndexVars[2] = 3;
error = KN_set_cb_grad(kc, cb, KN_DENSE, NULL, 3, cbjacIndexCons,

cbjacIndexVars, callbackEvalGA);
if (error) exit(-1);

/* Set nonlinear Hessian provided through callbacks. Since the

* Hessian is symmetric, only the upper triangle is provided.

* The upper triangular Hessian for nonlinear callback structure is:

*
* lambda0*6*x0 + lambda1*2*x3 x2*x3 x1*x3 x1*x2 + lambda1*2*x0

* 0 0 x0*x3 x0*x2

44 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

* 0 x0*x1

* 0

* (7 nonzero elements)

*/
cbhessIndexVars1[0] = 0; /* (row0,col0) element */
cbhessIndexVars2[0] = 0;
cbhessIndexVars1[1] = 0; /* (row0,col1) element */
cbhessIndexVars2[1] = 1;
cbhessIndexVars1[2] = 0; /* (row0,col2) element */
cbhessIndexVars2[2] = 2;
cbhessIndexVars1[3] = 0; /* (row0,col3) element */
cbhessIndexVars2[3] = 3;
cbhessIndexVars1[4] = 1; /* (row1,col2) element */
cbhessIndexVars2[4] = 2;
cbhessIndexVars1[5] = 1; /* (row1,col3) element */
cbhessIndexVars2[5] = 3;
cbhessIndexVars1[6] = 2; /* (row2,col3) element */
cbhessIndexVars2[6] = 3;
error = KN_set_cb_hess(kc, cb, 7, cbhessIndexVars1, cbhessIndexVars2,

→˓callbackEvalH);
if (error) exit(-1);

/** Set minimize or maximize (if not set, assumed minimize) */
error = KN_set_obj_goal(kc, KN_OBJGOAL_MAXIMIZE);
if (error) exit(-1);

/** Demonstrate setting a "newpt" callback. the callback function

* "callbackNewPoint" passed here is invoked after Knitro computes

* a new estimate of the solution. */
error = KN_set_newpt_callback(kc, callbackNewPoint, NULL);
if (error) exit(-1);

/** Set option to print output after every iteration. */
error = KN_set_int_param (kc, KN_PARAM_OUTLEV, KN_OUTLEV_ITER);
if (error) exit(-1);

/** Solve the problem.

*
* Return status codes are defined in "knitro.h" and described

* in the Knitro manual. */
nStatus = KN_solve (kc);

printf ("\n\n");
printf ("Knitro converged with final status = %d\n",

nStatus);

/** An example of obtaining solution information. */
error = KN_get_solution(kc, &nStatus, &objSol, x, NULL);
if (!error) {

printf (" optimal objective value = %e\n", objSol);
printf (" optimal primal values x = (%e, %e, %e, %e)\n", x[0], x[1], x[2],

→˓x[3]);
}
error = KN_get_abs_feas_error (kc, &feasError);
if (!error)

printf (" feasibility violation = %e\n", feasError);
error = KN_get_abs_opt_error (kc, &optError);
if (!error)

2.3. Derivatives 45



Artelys Knitro Documentation, Release 11.0.0

printf (" KKT optimality violation = %e\n", optError);

/** Delete the Knitro solver instance. */
KN_free (&kc);

return( 0 );
}

Running this code produces the following output.

=======================================
Commercial License

Artelys Knitro 11.0.0
=======================================

Knitro presolve eliminated 0 variables and 0 constraints.

outlev: 1
Knitro changing algorithm from AUTO to 1.
Knitro changing bar_initpt from AUTO to 3.
Knitro changing bar_murule from AUTO to 4.
Knitro changing bar_penaltycons from AUTO to 1.
Knitro changing bar_penaltyrule from AUTO to 2.
Knitro changing bar_switchrule from AUTO to 1.
Knitro changing linesearch from AUTO to 1.
Knitro changing linsolver from AUTO to 2.

Problem Characteristics ( Presolved)
-----------------------
Objective goal: Maximize
Objective type: general
Number of variables: 4 ( 4)

bounded below only: 0 ( 0)
bounded above only: 0 ( 0)
bounded below and above: 0 ( 0)
fixed: 0 ( 0)
free: 4 ( 4)

Number of constraints: 3 ( 3)
linear equalities: 0 ( 0)
quadratic equalities: 1 ( 1)
gen. nonlinear equalities: 2 ( 2)
linear one-sided inequalities: 0 ( 0)
quadratic one-sided inequalities: 0 ( 0)
gen. nonlinear one-sided inequalities: 0 ( 0)
linear two-sided inequalities: 0 ( 0)
quadratic two-sided inequalities: 0 ( 0)
gen. nonlinear two-sided inequalities: 0 ( 0)

Number of nonzeros in Jacobian: 7 ( 7)
Number of nonzeros in Hessian: 9 ( 9)

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 2.50000000082290e-01
Final feasibility error (abs / rel) = 1.86e-10 / 1.86e-10
Final optimality error (abs / rel) = 2.66e-09 / 2.66e-09
# of iterations = 3

46 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

# of CG iterations = 0
# of function evaluations = 4
# of gradient evaluations = 4
# of Hessian evaluations = 3
Total program time (secs) = 0.00183 ( 0.001 CPU time)
Time spent in evaluations (secs) = 0.00001

===============================================================================

Knitro converged with final status = 0
optimal objective value = 2.500000e-01
optimal primal values x = (7.937005e-01, 7.071068e-01, 5.297315e-01, 8.408964e-01)
feasibility violation = 1.863212e-10
KKT optimality violation = 2.660655e-09

Providing both first and second derivatives allows KNitro to solve this model in only 4 function evaluations.

Note: Automatic differentiation packages like ADOL-C and ADIFOR can help in generating code with derivatives.
These codes are an alternative to differentiating the functions manually. Another option is to use symbolic differenti-
ation software to compute an analytical formula for the derivatives.

2.3.7 Object-oriented C++ example

Let us now modify our C++ example from Getting started with the object-oriented interface, so as to provide first
derivatives.

#include "KTRSolver.h"
#include "KTRProblem.h"
#include <iostream>

class ProblemExample : public KNITRO::KTRProblem {
// objective properties
void setObjectiveProperties() {

setObjType(KTR_OBJTYPE_GENERAL);
setObjGoal(KTR_OBJGOAL_MINIMIZE);

}

// constraint properties
void setConstraintProperties()
{

// set constraint types
setConTypes(0, KNITRO::KTREnums::ConstraintType::ConLinear);
setConTypes(1, KNITRO::KTREnums::ConstraintType::ConQuadratic);

// set constraint lower bounds
setConLoBnds(0.0);

// set constraint upper bounds
setConUpBnds(0, 0.0);
setConUpBnds(1, KTR_INFBOUND);

}

// Variable bounds. All variables 0 <= x.
void setVariableProperties() {

setVarLoBnds(0.0);

2.3. Derivatives 47



Artelys Knitro Documentation, Release 11.0.0

}

public:
// constructor: pass number of variables and constraints to base class
ProblemQCQP() : KTRProblem(3, 2) {

// set problem properties
setObjectiveProperties();
setVariableProperties();
setConstraintProperties();

}

// Objective and constraint evaluation function
// overrides KTRProblem class
double evaluateFC(const std::vector<double>& x,

std::vector<double>& c,
std::vector<double>& objGrad,
std::vector<double>& jac) {

// constraints
c[0] = 8.0e0*x[0] + 14.0e0*x[1] + 7.0e0*x[2] - 56.0e0;
c[1] = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] - 25.0e0;

// return objective function value
return 1000 - x[0] * x[0] - 2.0e0*x[1] * x[1] - x[2] * x[2]

- x[0] * x[1] - x[0] * x[2];
}

// Gradient and Jacobian evaluation function
// overrides KTRProblem class
int evaluateGA(const std::vector<double>& x,

std::vector<double>& objGrad,
std::vector<double>& jac) override {

objGrad[0] = -2.0e0*x[0] - x[1] - x[2];
objGrad[1] = -4.0e0*x[1] - x[0];
objGrad[2] = -2.0e0*x[2] - x[0];

// gradient of the first constraint, c[0].
jac[0] = 8.0e0;
jac[1] = 14.0e0;
jac[2] = 7.0e0;

// gradient of the second constraint, c[1]. */
jac[3] = 2.0e0*x[0];
jac[4] = 2.0e0*x[1];
jac[5] = 2.0e0*x[2];
return 0;

}
};

int main(int argc, char *argv[]) {
// Create a problem instance.
ProblemExample problem = ProblemExample();

// Create a solver - optional arguments:
// exact first derivatives
// BFGS approximate second derivatives
KNITRO::KTRSolver solver(&instance, KTR_GRADOPT_EXACT, KTR_HESSOPT_BFGS);

48 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

int solveStatus = solver.solve();

if (solveStatus != 0) {
std::cout << std::endl;
std::cout << "KNITRO failed to solve the problem, final status = ";
std::cout << solveStatus << std::endl;

}
else {

std::cout << std::endl << "KNITRO successful, objective is = ";
std::cout << solver.getObj() << std::endl;

}

return 0;
}

Two changes were made to the previous example. This adds evaluateGA() function to the problem
class, defining the derivatives, and the KTRSolver constructor is passed KTR_GRADOPT_EXACT instead of
KTR_GRADOPT_FORWARD, since the exact gradient function is now defined. Running this example produces the
same output as the callable library example.

2.3.8 Checking derivatives

One drawback of user-supplied derivatives is the risk of error in computing or implementing the derivatives, which
would result in providing Knitro with (wrong and) incoherent information: the computed function values would not
match the computed derivatives. Approximate derivatives computed by finite differences are useful to check whether
user-supplied derivatives match user-supplied function evaluations.

Users of modeling languages such as AMPL need not be worried about this, since derivatives are computed auto-
matically by the modeling software. However, for users of MATLAB and the callable library it is a good practice to
check one’s exact derivatives against finite differences approximations. Note that small differences between exact and
finite-difference approximations are to be expected.

Knitro offers the following user options to check for errors in the user-supplied first derivatives (i.e., the objective
gradient and the Jacobian matrix) and second derivatives (i.e. the Hessian matrix).

2.3.9 Derivative Check Options

Option Meaning
derivcheck Specifies whether or not to enable the derivative checker, and which derivatives to

check (first, second or both)
derivcheck_terminateWhether to terminate after the derivative check or continue to the optimization if

successful
derivcheck_tol Specifies the relative tolerance used for identifying potential errors in the derivatives
derivcheck_type Specifies whether to use forward or central finite differences to compute the derivative

check

Note that to use the derivative checker, you must set gradopt = 1 (to check the first derivatives) and/or hessopt=1
(to check the second derivatives/Hessian). You must also supply callback routines that compute the objective and con-
straint functions and analytic first derivatives (to check the first derivatives), and/or analytic second derivatives/Hessian
(to check the second derivatives). By default, the derivative checker is turned off. To check first derivatives only, sim-
ply set derivcheck = 1; to check second derivatives/Hessian only set derivcheck = 2; and to check both first
and second derivatives set derivcheck = 3. Additionally you can set derivcheck_type to specify what type
of finite differencing to use for the derivative check, and derivcheck_tol to change the default relative tolerance

2.3. Derivatives 49



Artelys Knitro Documentation, Release 11.0.0

used to detect derivative errors. Setting derivcheck_terminate will determine whether Knitro always stops
after the derivative check is completed, or continues with the optimization (when the derivative check is successful).

It is best to check the derivatives at different points, and to avoid points where partial derivatives happen to equal zero.
If an initial point was provided by the user then Knitro will perform the derivative check at this point. Otherwise, if
no initial point is provided, Knitro will perform the derivative check at a randomly generated point that satisfies the
variable bounds. To perform a derivative check at different points, simply feed different initial points to Knitro.

Using the example problem above, if the Knitro derivative checker runs, with value derivcheck = 1, and the relative
differences between all the user-supplied first derivatives and finite-difference first derivatives satisfy the tolerance
defined by derivcheck_tol, then you will see the following output:

-------------------------------------------------------------------------
Knitro Derivative Check Information

Checking 1st derivatives with forward finite differences.
Derivative check performed at user-supplied initial 'x' point.
Printing relative differences > 1.0000e-06.

Maximum relative difference in the objective gradient = 0.0000e+00.
Maximum relative difference in the Jacobian = 0.0000e+00.
Derivative check passed.
-------------------------------------------------------------------------

before the optimization begins. Since the derivative check passed, Knitro will automatically proceed with the opti-
mization using the user-supplied derivatives.

Now let us modify the objective gradient computation in the example problem above as follows:

/* gradient of objective */
/* objGrad[0] = -2*x[0] - x[1] - x[2]; */
objGrad[0] = -2*x[0] - x[1]; /* BUG HERE !!! */

Running the code again, we obtain:

-------------------------------------------------------------------------
Knitro Derivative Check Information

Checking 1st derivatives with forward finite differences.
Derivative check performed at user-supplied initial 'x' point.
Printing relative differences > 1.0000e-06.

WARNING: The discrepancy for objective gradient element objGrad[0]
exceeds the derivative check relative tolerance of 1.000000e-06.
analytic (user-supplied) value = -6.000000000000e+00,
finite-difference value = -8.000000000000e+00,
|rel diff| = 3.3333e-01, |abs diff| = 2.0000e+00

Maximum relative difference in the objective gradient = 3.3333e-01.
Maximum relative difference in the Jacobian = 0.0000e+00.
Derivative check failed.
-------------------------------------------------------------------------

EXIT: Derivative check failed.

Knitro is warning us that the finite difference approximation of the first coordinate of the gradient at the initial point
is about -8, whereas its (supposedly) exact user-supplied value is about -6: there is a bug in our implementation of
the gradient of the objective. Knitro prints a message indicating the derivative discrepancy it found and terminates
immediately with a failure message.

50 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

2.4 Multistart

Nonlinear optimization problems are often nonconvex due to the objective function, constraint functions, or both.
When this is true, there may be many points that satisfy the local optimality conditions. Default Knitro behavior is to
return the first locally optimal point found. Knitro offers a simple multi-start feature that searches for a better optimal
point by restarting Knitro from different initial points. The feature is enabled by setting ms_enable = 1.

Note: In many cases the user would like to obtain the global optimum to the optimization problem; that is, the local
optimum with the very best objective function value. Knitro cannot guarantee that multi-start will find the global
optimum. In general, the global optimum can only be found with special knowledge of the objective and constraint
functions; for example, the functions may need to be bounded by other piece-wise convex functions. Knitro executes
with very little information about functional form. Although no guarantee can be made, the probability of finding a
better local solution improves if more start points are tried.

2.4.1 Multistart algorithm

The multi-start procedure generates new start points by randomly selecting components of x that satisfy lower and
upper bounds on the variables. Knitro finds a local optimum from each start point using the same problem definition
and user options. The final solution returned from KN_solve() is the local optimum with the best objective function
value if any local optima have been found. If no local optimum has been found, Knitro will return the best feasible
solution estimate it found. If no feasible solution estimate has been found, Knitro will return the least infeasible point.

2.4.2 Parallel multistart

The multistart procedure can run in parallel on shared memory multi-processor machines by setting
par_numthreads greater than 1. See Parallelism for more details on controlling parallel performance in Knitro.

When the multistart procedure is run in parallel, Knitro will produce the same sequence of initial points and solves
that you see when running multistart sequentially (though, perhaps, not in the same order).

Therefore, as long as you run multistart to completion (ms_terminate =0) and use the deterministic option
(ms_deterministic =1), you should visit the same initial points encountered when running multistart sequen-
tially, and get the same final solution. By default ms_terminate =0 and ms_deterministic =1 so that the
parallel multistart produces the same solution as the sequential multistart.

However, if ms_deterministic =0, or ms_terminate >0, there is no guarantee that the final solution reported
by multistart will be the same when run in parallel compared to the solution when run sequentially, and even the
parallel solution may change when run at different times.

The option par_msnumthreads can be used to set the number of threads used by the multistart procedure. For
instance, if par_numthreads =16 and par_msnumthreads =8, Knitro will run 8 solves in parallel and each
solve will be allocated 2 threads.

2.4.3 Multistart output

For multistart, you can have output from each local solve written to a file named knitro_ms_x.log where “x” is
the solve number by setting the option ms_outsub=1.

2.4. Multistart 51



Artelys Knitro Documentation, Release 11.0.0

2.4.4 Multistart options

The multi-start option is convenient for conducting a simple search for a better solution point. Search time is im-
proved if the variable bounds are made as tight as possible, confining the search to a region where a good solution
is likely to be found. The user can restrict the multi-start search region without altering bounds by using the options
ms_maxbndrange and ms_startptrange. The other multi-start options are the following.

Option Meaning
ms_deterministic Control whether to use deterministic multistart
ms_enable Enable multistart
ms_maxbndrange Maximum unbounded variable range for multistart
ms_maxsolves Maximum Knitro solves for multistart
ms_maxtime_cpu Maximum CPU time for multistart, in seconds
ms_maxtime_real Maximum real time for multistart, in seconds
ms_num_to_save Feasible points to save from multistart
ms_outsub Can write each solve to a file (parallel only)
ms_savetol Tol for feasible points being equal
ms_seed Initial seed for generating random start points
ms_startptrange Maximum variable range for multistart
ms_terminate Termination condition for multistart

The number of start points tried by multi-start is specified with the option ms_maxsolves. By default, Knitro will
try min(200, 10*n), where n is the number of variables in the problem. Users may override the default by setting
ms_maxsolves to a specific value.

The ms_maxbndrange option applies to variables unbounded in at least one direction (i.e., the upper or lower
bound, or both, is infinite) and keeps new start points within a total range equal to the value of ms_maxbndrange.
The ms_startptrange option applies to all variables and keeps new start points within a total range equal
to the value of ms_startptrange, overruling ms_maxbndrange if it is a tighter bound. In general, use
ms_startptrange to limit the multi-start search only if the initial start point supplied by the user is known to
be the center of a desired search area. Use ms_maxbndrange as a surrogate bound to limit the multi-start search
when a variable is unbounded.

The ms_num_to_save option allows a specific number of distinct feasible points to be saved in a file named
knitro_mspoints.log. Each point results from a Knitro solve from a different starting point, and must sat-
isfy the absolute and relative feasibility tolerances. Different start points may return the same feasible point, and the
file contains only distinct points. The option ms_savetol determines that two points are distinct if their objectives
or any solution components (including Lagrange multipliers) are separated by more than the value of ms_savetol
using a relative tolerance test. More specifically, two values x and y are considered distinct if:

|𝑥− 𝑦| ≥ max(1, |𝑥|, |𝑦|) * ms_savetol.

The file stores points in order from best objective to worst. If objectives are the same (as defined by ms_savetol),
then points are ordered from smallest feasibility error to largest. The file can be read manually, but conforms to a fixed
property/value format for machine reading.

Instead of using multi-start to search for a global solution, a user may want to use multi-start as a mechanism for
finding any locally optimal or feasible solution estimate of a nonconvex problem and terminate as soon as one such
point is found. The ms_terminate option, provides the user more control over when to terminate the multi-start
procedure.

If ms_terminate = optimal the multi-start procedure will stop as soon as the first locally optimal solution is found
or after ms_maxsolves – whichever comes first. If ms_terminate = feasible the multi-start procedure will
instead stop as soon as the first feasible solution estimate is found or after ms_maxsolves – whichever comes first.
If ms_terminate = maxsolves, it will only terminate after ms_maxsolves.

The option ms_seed can be used to change the seed used to generate the random initial points for multistart.

52 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

2.4.5 Multistart callbacks

The multistart procedure provides two callback utilities for the callable library API.

int KNITRO_API KN_set_ms_process_callback (KN_context_ptr kc,
KN_user_callback * const fnPtr,
void * const userParams);

int KNITRO_API KN_set_ms_initpt_callback (KN_context_ptr kc,
KN_ms_initpt_callback * const fnPtr,
void * const userParams);

The first callback can be used to perform some user task after each multistart solve and is set by calling
KN_set_ms_process_callback(). You can use the second callback to specify your own initial points for
multistart instead of using the randomly generated Knitro initial points. This callback function can be set through the
function KN_set_ms_initpt_callback().

See the Callable library API reference section in the Reference Manual for details on setting these callback functions
and the prototypes for these callback functions.

In the object-oriented interface, the following functions are used to set the callbacks:

void KTRProblem::setMSProcessCallback(KTRMSProcessCallback* MSProcessCallback);

void KTRProblem::setMSInitPtCallback(KTRMSInitptCallback* MSInitPtCallback);

See the Object-oriented interface reference section for details on setting these callback functions in the object-oriented
interface.

2.4.6 AMPL example

Let us consider again our AMPL example from Section Getting started with AMPL and run it with a different set of
options:

1 ampl: reset;
2 ampl: option solver knitroampl;
3 ampl: option knitro_options "ms_enable=1 ms_num_to_save=5 ms_savetol=0.01";
4 ampl: model testproblem.mod;
5 ampl: solve;

The Knitro log printed on screen changes to reflect the results of the many solver runs that were made during the
multistart procedure, and the very end of this log reads:

Multistart stopping, reached ms_maxsolves limit.

MULTISTART: Best locally optimal point is returned.
EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 9.35999999745429e+02
Final feasibility error (abs / rel) = 1.44e-07 / 3.83e-10
Final optimality error (abs / rel) = 6.48e-07 / 4.28e-08
# of iterations = 415
# of CG iterations = 90
# of function evaluations = 545
# of gradient evaluations = 475
# of Hessian evaluations = 422

2.4. Multistart 53



Artelys Knitro Documentation, Release 11.0.0

Total program time (secs) = 0.02660 ( 0.027 CPU time)

===============================================================================

Knitro 11.0.0: Locally optimal or satisfactory solution.
objective 935.9999997; feasibility error 1.44e-07
415 iterations; 545 function evaluations

which shows that many more functions calls were made than without multistart. A file knitro_mspoints.txt
was also created, whose content reads:

// Knitro 11.0.0 Multi-start Repository for feasible points.
// Each point contains information about the problem and the point.
// Points are sorted by objective value, from best to worst.

// Next feasible point.
numVars = 3
numCons = 2
objGoal = MINIMIZE
obj = 9.3600000342420878e+02
knitroStatus = 0
localSolveNumber = 1
feasibleErrorAbsolute = 0.00e+00
feasibleErrorRelative = 0.00e+00
optimalityErrorAbsolute = 2.25e-07
optimalityErrorRelative = 1.41e-08
x[0] = 2.0511214409048425e-07
x[1] = 4.1077619358921463e-08
x[2] = 7.9999996834308824e+00
lambda[0] = -4.5247620510168322e-08
lambda[1] = 2.2857143915699769e+00
lambda[2] = -1.0285715141992103e+01
lambda[3] = -3.2000001143071813e+01
lambda[4] = -2.1985040913238130e-07

// Next feasible point.
numVars = 3
numCons = 2
objGoal = MINIMIZE
obj = 9.5100000269458542e+02
knitroStatus = 0
localSolveNumber = 2
feasibleErrorAbsolute = 0.00e+00
feasibleErrorRelative = 0.00e+00
optimalityErrorAbsolute = 3.67e-07
optimalityErrorRelative = 2.62e-08
x[0] = 6.9999996377946481e+00
x[1] = 7.4479065893720198e-08
x[2] = 2.6499084231411754e-07
lambda[0] = -6.3891336872934633e-08
lambda[1] = 1.7500001368019027e+00
lambda[2] = -2.1791026695882249e-07
lambda[3] = -1.7500002055167382e+01
lambda[4] = -5.2500010586300956e+00

In addition to the known solution with value 936 that we had already found with a single solver run, we discover
another local minimum with value 951 that we had never seen before. In this case, the new solution is not as good as

54 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

the first one, but sometimes running the multistart algorithm significantly improves the objective function value with
respect to single-run optimization.

2.4.7 MATLAB example

In order to run the multistart algorithm in MATLAB, we must pass the relevant set of options to Knitro via the Knitro
options file. Let us create a simple text file named knitro.opt with the following content:

ms_enable 1
ms_num_to_save 5
ms_savetol 0.01
hessopt 2

(the last line hessopt 2 is necessary to remind Knitro to use approximate second derivatives, since we are not providing
the exact hessian). Then let us run our MATLAB example from Section MATLAB example again, where the call to
knitromatlab has been replaced with:

knitromatlab(@obj, x0, A, b, Aeq, beq, lb, ub, @nlcon, [], options, 'knitro.opt');

and where the knitro.opt file was placed in the current directory so that MATLAB can find it. The Knitro log
looks simlar to what we observed with AMPL.

2.4.8 C example

The C example can also be easily modified to enable multistart by adding the following lines before the call to
KN_solve():

// multistart
if (KN_set_int_param_by_name (kc, "ms_enable", 1) != 0)
exit( -1 );
if (KN_set_int_param_by_name (kc, "ms_num_to_save", 5) != 0)
exit( -1 );
if (KN_set_double_param_by_name (kc, "ms_savetol", 0.01) != 0)
exit( -1 );

Again, running this example we get a Knitro log that looks similar to what we observed with AMPL.

2.4.9 Object-oriented example

The object-oriented example can be modified to enable multistart by adding the following lines before the call to
solver.solve():

// multistart
solver.setParam("ms_enable", 1);
solver.setParam("ms_num_to_save", 5);
solver.setParam("ms_savetol", 0.01);

Again, running this example we get a Knitro log that looks similar to the trace obtained with AMPL.

2.4. Multistart 55



Artelys Knitro Documentation, Release 11.0.0

2.5 Mixed-integer nonlinear programming

Knitro provides tools for solving optimization models (both linear and nonlinear) with binary or integer variables.
The Knitro mixed integer programming (MIP) code offers three algorithms for mixed-integer nonlinear programming
(MINLP). The first is a nonlinear branch and bound method, the second implements the hybrid Quesada-Grossman
method for convex MINLP, and the third implements a mixed-integer Sequential Quadratic Programming (MISQP)
method that is able to handle non-relaxable integer variables.

The Knitro MINLP code is designed for convex mixed integer programming and is only a heuristic for nonconvex
problems. The MINLP code also handles mixed integer linear programs (MILP) of moderate size.

Note: The Knitro MIP tools do not currently handle special ordered sets (SOS’s) or semi-continuous variables.

2.5.1 Overview

The table below presents a brief overview of the main features included in the three MINLP algorithms. For a more
detailed description, check Algorithms/Methods.

Features Branch-and-Bound Quesada-Grossmann Mixed Integer Sequential
Quadratic Programming

Non-convex
MINLP

++ + ++

Convex
MNILP

++

Expensive
evaluations

++

Warm-start + + ++
MIP heuristics Rounding / Feasibility

pump / MPEC
Rounding / Feasibility
pump / MPEC

-

MIP cutting
planes

Knapsack Knapsack -

LP solver - IP/Direct or IP/CG or
SLQP

-

• Non-convex MINLP: performance on non-convex MINLP

• Convex MINLP: performance on convex MINLP

• Expensive evaluations: performance on problems with expensive function evalutations

• Warm-start: ability to warm-start

• MIP heuristics: heuristic search approach available to find an initial integer feasible point

• MIP cutting planes: cutting plane methods available

• LP solver: solver available for the resolution of the linear subproblems

2.5.2 AMPL example

Using MINLP features in AMPL is very simple: one only has to declare variables as integer in the AMPL model. In
our toy example, from Getting started with AMPL let us modify the declaration of variable x as follows:

var x{j in 1..3} >= 0 integer;

56 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

and then run the example again. The Knitro log now mentions 3 integer variables, and displays additional statistics
related to the MIP solve.

=======================================
Commercial License

Artelys Knitro 11.0.0
=======================================

Knitro changing mip_method from AUTO to 1.
Knitro changing mip_rootalg from AUTO to 1.
Knitro changing mip_lpalg from AUTO to 3.
Knitro changing mip_branchrule from AUTO to 2.
Knitro changing mip_selectrule from AUTO to 2.
Knitro changing mip_rounding from AUTO to 3.
Knitro changing mip_heuristic from AUTO to 1.
Knitro changing mip_pseudoinit from AUTO to 1.

Problem Characteristics
-----------------------
Objective goal: Minimize
Number of variables: 3

bounded below: 3
bounded above: 0
bounded below and above: 0
fixed: 0
free: 0

Number of binary variables: 0
Number of integer variables: 3
Number of constraints: 2

linear equalities: 1
quadratic equalities: 0
gen. nonlinear equalities: 0
linear one-sided inequalities: 0
quadratic one-sided inequalities: 1
gen. nonlinear one-sided inequalities: 0
linear two-sided inequalities: 0
quadratic two-sided inequalities: 0
gen. nonlinear two-sided inequalities: 0

Number of nonzeros in Jacobian: 6
Number of nonzeros in Hessian: 5

Knitro detected 0 GUB constraints
Knitro derived 0 knapsack covers after examining 0 constraints
Knitro solving root node relaxation

Node Left Iinf Objective Best relaxatn Best incumbent
------ ------ ------ -------------- -------------- --------------

* 1 0 0 9.360000e+02 9.360000e+02 9.360000e+02

EXIT: Optimal solution found.

Final Statistics for MIP
------------------------
Final objective value = 9.36000000000000e+02
Final integrality gap (abs / rel) = 0.00e+00 / 0.00e+00 ( 0.00%)
# of nodes processed = 1
# of subproblems solved = 2
Total program time (secs) = 0.00829 ( 0.007 CPU time)
Time spent in evaluations (secs) = 0.00018

2.5. Mixed-integer nonlinear programming 57



Artelys Knitro Documentation, Release 11.0.0

===========================================================================

Knitro 11.0.0: Locally optimal or satisfactory solution.
objective 936; integrality gap 0
1 nodes; 2 subproblem solves

Note that this example is not particularly interesting since the two solutions we know for the continuous version of
this problem are already integer “by chance”. As a consequence, the MINLP solve returns the same solution as the
continuous solve. However, if for instance you change the first constraint to:

s.t. c1: 8*x[1] + 14*x[2] + 7*x[3] - 50 = 0;

instead of:

s.t. c1: 8*x[1] + 14*x[2] + 7*x[3] - 56 = 0;

you will observe that the integer solution differs from the continuous one.

2.5.3 MATLAB example

To use the MINLP features in MATLAB, one must use the function knitromatlab_mip, rather than knitromatlab. The
function signature is very similar to knitromatlab, but three additional argument arrays are used. The most elaborate
form is:

[x,fval,exitflag,output,lambda,grad,hessian] =
knitromatlab_mip(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,...

xType,objFnType,cineqFnType,extendedFeatures,options,KnitroOptions)

The array xType sets the variable types and must be the same length as x0 if it is used. Continuous, integer, and binary
variables are set with 0, 1, and 2, respectively. Passing an empty array, [], is equivalent to an array of all zeros.

The scalar objFnType sets the objective function type. Uncertain, convex, and nonconvex are set with 0, 1, and 2,
respectively. Passing an empty array, [], is equivalent to passing zero.

The array cineqFnType sets the inequality constraint function types and its length must be the same as the number of
inequality constraints. Linear constraints are known to be convex, and nonlinear equality constraints are known to be
nonconvex, so they are not included in the array. Uncertain, convex, and nonconvex inequality constraints are set with
0, 1, and 2, respectively. Passing an empty array, [], is equivalent to passing an array of all zeros.

Modifying the toy example in MATLAB to use integer variables can be done as follows:

xType = [2;2;2];
objFnType = 1;
cineqFnType = 1;

%modify the solver call
x = knitromatlab_mip(obj, x0, A, b, Aeq, beq, lb, ub, ...

nlcon, xType, objFnType, cineqFnType);

2.5.4 C example

As with AMPL, defining a MIP problem only requires declaring integer variables via the API function
KN_set_var_types() (by default, variables are assumed to be continuous).

In order to turn our C toy example into a MINLP problem, it thus suffices to add

58 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

/* in the declarations */
int i;

/* mark all variables as integer */
for (i=0; i<n; i++) {

error = KN_set_var_type (kc, i, KN_VARTYPE_INTEGER);
}

The Knitro log will look similar to what we observed in the AMPL example above. Again, this example is quite
unusual in the sense that the continuous solution is already integer, which of course is not the case in general.

2.5.5 Object-oriented C++ example

A MIP problem is defined and solved via the object-oriented interface by adding additional problem information in
the problem class.

In the following, we will define how to turn the toy example into a MINLP problem. The ProblemExample class
has to be extended with new definitions.

In the function setObjectiveProperties(), the function KTRProblem::setObjFnType(int
fnType) is used to define the objective function type:

setObjFnType(KNITRO::KTREnums::FunctionType::Convex);

In the function setConstraintProperties(), the constraint function types are defined with the function
KTRProblem::setConFnTypes(int id,int fnType):

setConFnTypes(0, KNITRO::KTREnums::FunctionType::Convex);
setConFnTypes(1, KNITRO::KTREnums::FunctionType::Nonconvex);

In the function setVariableProperties(), the variable types are defined with the function
KTRProblem::setVarFntypes(int fnTypes):

setVarFnTypes(KNITRO::KTREnums::VariableType::Integer);

Without specifying a variable index, the function sets variable types for all variables to integer.

This example uses the KTRProblem class to simplify implementing KTRIProblem. If using
KTRIProblem only, the functions KTRIProblem::getObjFnType, KTRIProblem::getConFnType, and
KTRIProblem::getVarFnType should be implemented to return the appropriate values.

The KNITRO log will look similar to what we observed in the AMPL example above. Again, this example is quite
unusual in the sense that the continuous solution is already integer, which of course is not the case in general.

2.5.6 MINLP options

Many user options are provided for the MIP features to tune performance, including options for branching, node
selection, rounding and heuristics for finding integer feasible points. User options specific to the MIP tools begin with
mip_. It is recommended to experiment with several of these options as they often can make a significant difference in
performance.

Name Meaning
mip_branchrule MIP branching rule
mip_debug MIP debugging level (0=none, 1=all)

Continued on next page

2.5. Mixed-integer nonlinear programming 59



Artelys Knitro Documentation, Release 11.0.0

Table 2.1 – continued from previous page
Name Meaning
mip_gub_branch Branch on GUBs (0=no, 1=yes)
mip_heuristic MIP heuristic search
mip_heuristic_maxit MIP heuristic iteration limit
mip_heuristic_terminate MIP heuristic termination condition
mip_implications Add logical implications (0=no, 1=yes)
mip_integer_tol Threshold for deciding integrality
mip_integral_gap_abs Absolute integrality gap stop tolerance
mip_integral_gap_rel Relative integrality gap stop tolerance
mip_intvar_strategy Treatment of integer variables
mip_knapsack Add knapsack cuts (0=no, 1=ineqs, 2=ineqs+eqs)
mip_lpalg LP subproblem algorithm
mip_maxnodes Maximum nodes explored
mip_maxsolves Maximum subproblem solves
mip_maxtime_cpu Maximum CPU time in seconds for MIP
mip_maxtime_real Maximum real in seconds time for MIP
mip_method MIP method (0=auto, 1=BB, 2=HQG, 3=MISQP)
mip_nodealg Standard node relaxation algorithm
mip_outinterval MIP output interval
mip_outlevel MIP output level
mip_outsub Enable MIP subproblem output
mip_pseudoinit Pseudo-cost initialization
mip_relaxable Are integer variables relaxable?
mip_rootalg Root node relaxation algorithm
mip_rounding MIP rounding rule
mip_selectdir MIP node selection direction
mip_selectrule MIP node selection rule
mip_strong_candlim Strong branching candidate limit
mip_strong_level Strong branching tree level limit
mip_strong_maxit Strong branching iteration limit
mip_terminate Termination condition for MIP

2.5.7 Algorithms/Methods

The default MINLP method in Knitro is a standard implementation of branch-and-bound for nonlinear optimization.
This method involves solving a relaxed, continuous nonlinear optimization subproblem at every node of the branch-
and-bounds tree. This method is generally the preferred method. It is primarily designed for convex models, and in
this case the integrality gap measure can be trusted. It can also be applied to non-convex models, and often works well
on these models. However it may sometimes get stuck at integer feasible points that are not globally optimal solutions
when the model in nonconvex. In addition, the integrality gap meaure may not be accurate since this measure is based
on the assumption that the nonlinear optimization subproblems are always solved to global optimality (which may not
be the case when the model is nonconvex).

The hybrid Quesada-Grossman (HQG) method in Knitro is a variant of branch-and-bound for MINLP. It maintains one
branch-and-bound tree but solves linear programming (LP) subproblems at most of the nodes, while only occasionally
solving nonlinear optimization subproblems at integer feasible nodes. The solutions of the LP subproblems are used to
generate outer approximations/cuts, which are continually added to the master problem. This method should generally
only be applied to convex models since the outer approximations are only valid when the model is convex. This
method will typically take many more nodes to solve compared with the standard branch-and-bound method, but the
node subproblems are often easier to solve since most of them are LPs.

The third method (MISQP) is a largely heuristic method that attempts to extend the SQP method for continuous,

60 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

nonlinear optimization to the case where there are integer variables. This method is primarily designed for small
problems (e.g. less than 100 variables) where function evaluations may involve expensive black-box simulations
and derivatives may not be available. In contrast to the other MINLP algorithms in Knitro, this method is able to
handle models where the integer variables cannot be relaxed. This means that the simulations or function evaluations
can only occur when integer variables are at integer values (e.g. the integer variables may have no meaning at non-
integral values). This method will typically converge in far fewer function evaluations compared with the other MINLP
methods in Knitro and is primarily intended for small problems where these evaluations are the dominant cost. This
method can be applied to either convex or non-convex models, but may converge to non-global integer, feasible points.
However, since this algorithm runs similarly to the continuous SQP algorithm, you can apply the parallel multi-start
feature (see Section Multistart) to the MISQP method to increase the chances of finding the global solution.

2.5.8 Branching priorities

It is also possible to specify branching priorities in Knitro. Priorities must be positive numbers (variables with non-
positive values are ignored). Variables with higher priority values will be considered for branching before variables
with lower priority values. When priorities for a subset of variables are equal, the branching rule is applied as a
tiebreaker.

Branching priorities in AMPL

Branching priorities for integer variables can be specified in AMPL using the AMPL suffixes feature (see AMPL
suffixes defined for Knitro) as shown below.

...
ampl: var x{j in 1..3} >= 0 integer;
...
ampl: suffix priority IN, integer, >=0, <=9999;
ampl: let x[1].priority := 5;
ampl: let x[2].priority := 1;
ampl: let x[3].priority := 10;

See the AMPL documentation for more information on the ”.priority ” suffix.

Branching priorities in the callable library API

Branching priorities for integer variables can be specified through the callable library interface using the
KN_set_set_mip_branching_priorities() functions shown below.

int KNITRO_API KN_set_mip_branching_priorities
( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const int * const xPriorities);

int KNITRO_API KN_set_mip_branching_priorities_all
( KN_context_ptr kc,
const int * const xPriorities);

int KNITRO_API KN_set_mip_branching_priority
( KN_context_ptr kc,
const KNINT indexVar,
const int xPriority);

Values for continuous variables are ignored. Knitro makes a local copy of all inputs, so the application may free
memory after the call. This routine must be called after calling KN_set_var_types() to mark integer variables.

2.5. Mixed-integer nonlinear programming 61



Artelys Knitro Documentation, Release 11.0.0

Branching priorities in the object-oriented interface

Branching priorities for integer variables can be specified through the object-oriented interface using the function
shown below.

void KTRSolver::mipSetBranchingPriorities(const std::vector<int>& xPriorities);

The std::vector<int> xPriorities has length “n”, where n is the number of variables. Values for continu-
ous variables are ignored. This method must be called after calling the KTRSolver constructor and before calling
KTRSolver::solve().

2.5.9 Special Treatment of Integer Variables

You can specify special treatment of integer variables using the mip_intvar_strategy user option in Knitro.
In particularly, you can use this option to specify that all integer variables are relaxed, or that all binary variables
should be converted to complementarity constraints (see Section Complementarity constraints for a description of
complementarity constraints).

In addition you can specify special treatments of individual integer variables through the callable library interface
function KN_set_mip_intvar_strategies()

int KNITRO_API KN_set_mip_intvar_strategies
( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const int * const xStrategies);

int KNITRO_API KN_set_mip_intvar_strategies_all
( KN_context_ptr kc,
const int * const xStrategies);

int KNITRO_API KN_set_mip_intvar_strategy
( KN_context_ptr kc,
const KNINT indexVar,
const int xStrategy);

Here indexVars specifies the index of the integer variable you want to apply the special treatment to, and xStrategies
specifies how you want to handle that particular integer variable (e.g., no special treatment, relax, or convert to a
complementarity constraint).

Special strategies for integer variables can be specified in the AMPL interface using the intvarstrategy AMPL suffix,
and in the MATLAB interface using the extendedFeatures.xIntStrategy structure.

2.5.10 MINLP callbacks

The Knitro MINLP procedure provides a user callback utility that can be used in the callable library API to perform
some user task after each node is processed in the branch-and-bound tree. This callback function is set by calling the
following function:

int KNITRO_API KN_set_mip_node_callback (KN_context_ptr kc,
KN_user_callback * const fnPtr,
void * const userParams);

See the Callable library API reference section in the Reference Manual for details on setting this callback function
and the prototype for this callback function.

62 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

2.5.11 Determining convexity/concavity

Knowing whether or not a function is convex may be useful in methods for mixed integer programming as lineariza-
tions derived from convex functions can be used as outer approximations of those constraints. These outer approxima-
tions are useful in computing lower bounds. The callable library API allows for the user to specify whether or not the
problem functions (objective and constraints) are convex or concave via the functions: KN_set_obj_property()
and KN_set_con_properties().

A function f is convex if for any two points x and y, we have

𝑓(𝛼𝑥+ (1− 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1− 𝛼)𝑓(𝑦), for all 𝛼 ∈ [0, 1].

and concave if

𝑓(𝛼𝑥+ (1− 𝛼)𝑦) ≥ 𝛼𝑓(𝑥) + (1− 𝛼)𝑓(𝑦), for all 𝛼 ∈ [0, 1].

By default functions are assumed to be nonconvex (i.e. neither convex, nor concave). The objective function and any
constraint functions that satisfy the conditions above should be marked as convex or concave. All linear functions are
convex. Any nonlinear equality constraint is nonconvex. Knitro will use function convexity/concavity information to
determine whether the optimization problem as a whole is convex or not. If the problem is determined to be convex
Knitro may be able to apply specializations to improve performance. If you know your model is convex, you can also
directly tell Knitro this by setting the convex option.

The MIP solvers in Knitro are designed for convex problems. For nonconvex problems, these solvers are only heuris-
tics and may terminate at non-optimal points. The continuous solvers in Knitro can handle either convex or nonconvex
models. However, for nonconvex models, they may converge to local (rather than global) optimal solutions.

2.5.12 Additional examples

Examples for solving MINLP problems using the MATLAB, C, C++, Java, C#, Python and R interfaces are provided
with the distribution in the knitromatlab and examples directories.

2.6 Complementarity constraints

A complementarity constraint enforces that two variables are complementary to each other; i.e., that the following
conditions hold for scalar variables x and y:

𝑥 · 𝑦 = 0, 𝑥 ≥ 0, 𝑦 ≥ 0.

The condition above is sometimes expressed more compactly as

0 ≤ 𝑥 ⊥ 𝑦 ≥ 0.

Intuitively, a complementarity constraint is a way to model a constraint that is combinatorial in nature since, for
example, the complementary conditions imply that either x or y must be 0 (both may be 0 as well).

Without special care, these types of constraints may cause problems for nonlinear optimization solvers because prob-
lems that contain these types of constraints fail to satisfy constraint qualifications that are often assumed in the theory
and design of algorithms for nonlinear optimization. For this reason, we provide a special interface in Knitro for spec-
ifying complementarity constraints. In this way, Knitro can recognize these constraints and handle them with special
care internally.

Note: The complementarity features of Knitro are not available through all interfaces. Currently, they are accessible
only to users of the callable library, the MATLAB interface, and some modeling environments such as AMPL.

2.6. Complementarity constraints 63



Artelys Knitro Documentation, Release 11.0.0

If a modeling language does not allow you to specifically identify and express complementarity constraints, then these
constraints must be formulated as regular constraints and Knitro will not perform any specializations.

Note: There are various ways to express complementarity conditions, but the complementarity features in the Knitro
callable library API and MATLAB API require you to specify the complementarity condition as two non-negative
variables complementary to each other as shown above. Any complementarity condition can be written in this form.

2.6.1 Example

This problem is taken from J.F. Bard, Convex two-level optimization, Mathematical Programming 40(1), 15-27, 1988.

Assume we want to solve the following MPEC with Knitro.

min 𝑓(𝑥) = (𝑥0 − 5)2 + (2𝑥1 + 1)2

subject to:
𝑐0(𝑥) = 2(𝑥1 − 1)− 1.5𝑥0 + 𝑥2 − 0.5𝑥3 + 𝑥4 = 0

𝑐1(𝑥) = 3𝑥0 − 𝑥1 − 3 ≥ 0

𝑐2(𝑥) = −𝑥0 + 0.5𝑥1 + 4 ≥ 0

𝑐3(𝑥) = −𝑥0 − 𝑥1 + 7 ≥ 0

𝑐1(𝑥) · 𝑥2 = 0

𝑐2(𝑥) · 𝑥3 = 0

𝑐3(𝑥) · 𝑥4 = 0

𝑥𝑖 ≥ 0 ∀𝑖 = 0, . . . 4.

Observe that complementarity constraints appear. Expressing this in compact notation, we have:

min 𝑓(𝑥) = (𝑥0 − 5)2 + (2𝑥1 + 1)2

subject to:
2(𝑥1 − 1)− 1.5𝑥0 + 𝑥2 − 0.5𝑥3 + 𝑥4 = 0 (𝑐0)

𝑐1(𝑥) = 3𝑥0 − 𝑥1 − 3

𝑐2(𝑥) = −𝑥0 + 0.5𝑥1 + 4

𝑐3(𝑥) = −𝑥0 − 𝑥1 + 7

0 ≤ 𝑐1(𝑥) ⊥ 𝑥2 ≥ 0

0 ≤ 𝑐2(𝑥) ⊥ 𝑥3 ≥ 0

0 ≤ 𝑐3(𝑥) ⊥ 𝑥4 ≥ 0

𝑥0, 𝑥1 ≥ 0.

Since Knitro requires that complementarity constraints be written as two variables complementary to each other, we

64 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

must introduce slack variables (𝑥5, 𝑥6, 𝑥7) and re-write the problem as follows:

min 𝑓(𝑥) = (𝑥0 − 5)2 + (2𝑥1 + 1)2

subject to:
2(𝑥1 − 1)− 1.5𝑥0 + 𝑥2 − 0.5𝑥3 + 𝑥4 = 0 (𝑐0)

3𝑥0 − 𝑥1 − 3− 𝑥5 = 0 (𝑐1)

− 𝑥0 + 0.5𝑥1 + 4− 𝑥6 = 0 (𝑐2)

− 𝑥0 − 𝑥1 + 7− 𝑥7 = 0 (𝑐3)

0 ≤ 𝑥5 ⊥ 𝑥2 ≥ 0

0 ≤ 𝑥6 ⊥ 𝑥3 ≥ 0

0 ≤ 𝑥7 ⊥ 𝑥4 ≥ 0

𝑥𝑖 ≥ 0, ∀𝑖 = 0, . . . 7..

The problem is now in a form suitable for Knitro.

2.6.2 Complementarity constraints in AMPL

Complementarity constraints should be modeled using the AMPL complements command; e.g.,:

0 <= x complements y => 0;

The Knitro callable library API and MATLAB API require that complementarity constraints be formulated as one
variable complementary to another variable (both non-negative). However, in AMPL (beginning with Knitro 8.0), you
can express the complementarity constraints in any form allowed by AMPL. AMPL will then translate the comple-
mentarity constraints automatically to the form required by Knitro.

Be aware that the AMPL presolver sometimes removes complementarity constraints. Check carefully that the problem
definition reported by Knitro includes all complementarity constraints, or switch off the AMPL presolver by setting
option presolve to 0, if you don’t want the AMPL presolver to modify the problem.

2.6.3 Complementarity constraints in MATLAB

Complementarity constraints can be specified through two fields of the extendedFeatures structure. The fields ccIn-
dexList1 and ccIndexList2 contain the pairs of indices of variables that are complementary to each other.

Note: Variables which are specified as complementary should be specified to have a lower bound of 0 through the
variable lower bound array lb.

2.6.4 Complementarity constraints with the callable library

Complementarity constraints can be specified in Knitro through a call to the function KN_set_compcons() which
has the following prototype:

int KNITRO_API KN_set_compcons ( KN_context_ptr kc,
const KNINT nCC,
const int * const ccTypes,
const KNINT * const indexComps1,
const KNINT * const indexComps2);

2.6. Complementarity constraints 65



Artelys Knitro Documentation, Release 11.0.0

In addition to kc, which is a pointer to a structure that holds all the relevant information about a particular problem
instance, the arguments are:

• nCC, the number of complementarity constraints to be added to the problem (i.e., the number of pairs of variables
that are complementary to each other).

• ccTypes, array of length nCC specifying the type for each complementarity constraint. Currently this MUST be
set to KN_CCTYPE_VARVAR since Knitro currently only supports complementarity constraints between two
(non-negative) variables. However, this parameter will be used in the future to support more general types of
complementarities (such as complementarities between a variable and a constraint).

• indexComps1 and indexComps2, two arrays of length nCC specifying the variable indices for the first and second
sets of variables in the pairs of complementary variables.

Note: Variables which are specified as complementary through the special KN_set_compcons() functions should
be specified to have a lower bound of 0 through the Knitro lower bound array xLoBnds.

Note: KN_set_compcons() can only be called once to load all complementarity constraints in the problem at one
time.

2.6.5 Complementarity constraints with the object-oriented interface

Complementarity constraints can be specified in the object-oriented interface by defining the constraints in a class
inheriting from KTRIProblem.

The KTRIProblem should implement the functions:

std::vector<int> complementarityIndexList1();
std::vector<int> complementarityIndexList2();

to return the lists of complementary variables. Parameter indexList1 and indexList2, of the same length,
specifying the variable indices for the first and second sets of variables in the pairs of complementary variables.

When using the KTRProblem class, the values can be passed to the function:

KTRIProblem::setComplementarity(const std::vector<int>& indexList1,
const std::vector<int>& indexList2)

to set the values returned by the complementarityIndexList functions.

Note: Variables which are specified as complementary through KTRIProblem::setComplementarity()
functions should have a lower bound of 0. This can be set using KTRProblem::setVarLoBnds().

2.6.6 AMPL example

The AMPL model for our toy problem above is the following.

# Variables
var x{j in 0..7} >= 0;

# Objective function

66 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

minimize obj:
(x[0]-5)^2 + (2*x[1]+1)^2;

# Constraints
s.t. c0: 2*(x[1]-1) - 1.5*x[0] + x[2] - 0.5*x[3] + x[4] = 0;
s.t. c1: 3*x[0] - x[1] - 3 - x[5] = 0;
s.t. c2: -x[0] + 0.5*x[1] + 4 - x[6] = 0;
s.t. c3: -x[0] - x[1] + 7 - x[7] = 0;
s.t. c4: 0 <= x[5] complements x[2] >= 0;
s.t. c5: 0 <= x[6] complements x[3] >= 0;
s.t. c6: 0 <= x[7] complements x[4] >= 0;

Running it through AMPL, we get the following output.

=======================================
Commercial License

Artelys Knitro 11.0.0
=======================================

No start point provided -- Knitro computing one.

Knitro presolve eliminated 0 variables and 0 constraints.

datacheck: 0
hessian_no_f: 1
par_concurrent_evals: 0
The problem is identified as an MPEC.
Knitro changing algorithm from AUTO to 1.
Knitro changing bar_initpt from AUTO to 3.
Knitro changing bar_murule from AUTO to 4.
Knitro changing bar_penaltycons from AUTO to 1.
Knitro changing bar_penaltyrule from AUTO to 2.
Knitro changing bar_switchrule from AUTO to 2.
Knitro changing linesearch from AUTO to 1.
Knitro changing linsolver from AUTO to 2.

Problem Characteristics ( Presolved)
-----------------------
Objective goal: Minimize
Objective type: quadratic
Number of variables: 11 ( 11)

bounded below only: 11 ( 11)
bounded above only: 0 ( 0)
bounded below and above: 0 ( 0)
fixed: 0 ( 0)
free: 0 ( 0)

Number of constraints: 7 ( 7)
linear equalities: 7 ( 7)
quadratic equalities: 0 ( 0)
gen. nonlinear equalities: 0 ( 0)
linear one-sided inequalities: 0 ( 0)
quadratic one-sided inequalities: 0 ( 0)
gen. nonlinear one-sided inequalities: 0 ( 0)
linear two-sided inequalities: 0 ( 0)
quadratic two-sided inequalities: 0 ( 0)
gen. nonlinear two-sided inequalities: 0 ( 0)

Number of complementarities: 3 ( 3)
Number of nonzeros in Jacobian: 20 ( 20)

2.6. Complementarity constraints 67



Artelys Knitro Documentation, Release 11.0.0

Number of nonzeros in Hessian: 2 ( 2)

Iter Objective FeasError OptError ||Step|| CGits
-------- -------------- ---------- ---------- ---------- -------

0 2.811162e+01 1.548e+00
10 1.700000e+01 6.178e-10 4.001e-07 3.202e-05 0

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 1.70000000199027e+01
Final feasibility error (abs / rel) = 6.18e-10 / 3.99e-10
Final optimality error (abs / rel) = 4.00e-07 / 5.00e-08
# of iterations = 10
# of CG iterations = 1
# of function evaluations = 0
# of gradient evaluations = 0
# of Hessian evaluations = 0
Total program time (secs) = 0.00268 ( 0.002 CPU time)
Time spent in evaluations (secs) = 0.00000

===============================================================================

Knitro 11.0.0: Locally optimal or satisfactory solution.
objective 17.000000019902657; feasibility error 6.18e-10
10 iterations; 0 function evaluations

Knitro received our three complementarity constraints correctly (“Number of complementarities: 3”) and converged
successfully (“Locally optimal solution found”).

2.6.7 MATLAB example

The following functions can be used in MATLAB to solve the same example as is shown for AMPL.

function exampleMPEC1

Jpattern = [];

Hpattern = sparse(zeros(8));
Hpattern(1,1) = 1;
Hpattern(2,2) = 1;

options = optimset('Algorithm', 'interior-point', 'Display','iter', ...
'GradObj','on','GradConstr','on', ...
'JacobPattern',Jpattern,'Hessian','user-supplied','HessPattern',Hpattern, ...
'HessFcn',@hessfun,'MaxIter',1000, ...
'TolX', 1e-15, 'TolFun', 1e-8, 'TolCon', 1e-8);

A = []; b = [];
Aeq = [-1.5 2 1 -0.5 1 0 0 0;

3 -1 0 0 0 -1 0 0;
-1 0.5 0 0 0 0 -1 0;
-1 -1 0 0 0 0 0 -1];

beq = [2 3 -4 -7];
lb = zeros(8,1);
ub = Inf*ones(8,1);

68 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

x0 = zeros(8,1);

extendedFeatures.ccIndexList1 = [6 7 8];
extendedFeatures.ccIndexList2 = [3 4 5];

[x,fval,exitflag,output,lambda] = ...
knitromatlab(@objfun,x0,A,b,Aeq,beq,lb,ub,@constfun,extendedFeatures,options);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [f,g] = objfun(x)

f = (x(1)-5)^2 + (2*x(2)+1)^2;

if nargout > 1
g = zeros(8,1);
g(1) = 2*(x(1)-5);
g(2) = 4*(2*x(2)+1);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [c,ceq,Gc,Gceq]= constfun(x)

c = [];
ceq=[];
Gc = [];
Gceq=[];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [H]= hessfun(x,lambda)

H=sparse(zeros(8));

H(1,1) = 2;
H(2,2) = 4;

Running this file will produce the following output from Knitro.

=======================================
Commercial License

Artelys Knitro 11.0.0
=======================================

Knitro presolve eliminated 0 variables and 0 constraints.

algorithm: 1
feastol: 1e-08
honorbnds: 1
maxit: 1000
opttol: 1e-08
outlev: 4
par_concurrent_evals: 0
The problem is identified as an MPEC.
Knitro changing bar_initpt from AUTO to 3.
Knitro changing bar_murule from AUTO to 4.
Knitro changing bar_penaltycons from AUTO to 1.

2.6. Complementarity constraints 69



Artelys Knitro Documentation, Release 11.0.0

Knitro changing bar_penaltyrule from AUTO to 2.
Knitro changing bar_switchrule from AUTO to 1.
Knitro changing linsolver from AUTO to 2.
Knitro shifted start point to satisfy presolved bounds (8 variables).

Problem Characteristics ( Presolved)
-----------------------
Objective goal: Minimize
Objective type: general
Number of variables: 8 ( 8)

bounded below only: 8 ( 8)
bounded above only: 0 ( 0)
bounded below and above: 0 ( 0)
fixed: 0 ( 0)
free: 0 ( 0)

Number of constraints: 4 ( 4)
linear equalities: 4 ( 4)
quadratic equalities: 0 ( 0)
gen. nonlinear equalities: 0 ( 0)
linear one-sided inequalities: 0 ( 0)
quadratic one-sided inequalities: 0 ( 0)
gen. nonlinear one-sided inequalities: 0 ( 0)
linear two-sided inequalities: 0 ( 0)
quadratic two-sided inequalities: 0 ( 0)
gen. nonlinear two-sided inequalities: 0 ( 0)

Number of complementarities: 3 ( 3)
Number of nonzeros in Jacobian: 14 ( 14)
Number of nonzeros in Hessian: 2 ( 2)

Iter fCount Objective FeasError OptError ||Step|| CGits
-------- -------- -------------- ---------- ---------- ---------- -------

0 2 2.496050e+01 4.030e+00
1 3 2.847389e+01 1.748e+00 2.160e+00 1.990e+00 1
2 4 4.226663e+01 3.832e-01 4.643e+00 1.442e+00 0
3 5 4.667799e+01 1.126e-02 3.638e+00 5.993e-01 0
4 6 4.213217e+01 4.179e-03 1.258e+01 1.185e+00 0
5 7 4.074018e+01 3.072e-03 1.265e+01 1.580e-01 1
6 8 3.810894e+01 1.133e-04 1.259e+01 3.113e-01 0
7 9 1.701407e+01 1.682e-04 1.542e+00 4.771e+00 0
8 10 1.699966e+01 1.522e-04 6.416e-02 2.385e-02 0
9 11 1.700003e+01 1.799e-06 3.532e-05 2.154e-04 0

10 12 1.700000e+01 6.354e-11 1.530e-09 5.298e-05 0

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 1.70000000010379e+01
Final feasibility error (abs / rel) = 6.35e-11 / 1.58e-11
Final optimality error (abs / rel) = 1.53e-09 / 1.91e-10
# of iterations = 10
# of CG iterations = 2
# of function evaluations = 12
# of gradient evaluations = 12
# of Hessian evaluations = 10
Total program time (secs) = 0.00827 ( 0.019 CPU time)
Time spent in evaluations (secs) = 0.00464

70 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

===============================================================================

2.6.8 C example

The same example can be implemented using the callable library. Arrays indexList1 and indexList2 are used to specify
the list of complementarities and the KN_set_compcons() function is called to register the list.

#include <stdio.h>
#include <stdlib.h>
#include "knitro.h"

int main (int argc, char *argv[])
{

int i, nStatus, error;

/** Declare variables. */
KN_context *kc;
int n, m;
double xLoBnds[8] = {0, 0, 0, 0, 0, 0, 0};
double xInitVals[8] = {0, 0, 0, 0, 0, 0, 0};
double cEqBnds[4] = {2, 3, -4, -7};
/** Used to define linear constraints. */
int lconIndexCons[14];
int lconIndexVars[14];
double lconCoefs[14];
/** Used to specify linear objective terms. */
int lobjIndexVars[2];
double lobjCoefs[2];
/** Used to specify quadratic objective terms. */
int qobjIndexVars1[2];
int qobjIndexVars2[2];
double qobjCoefs[2];
/** Used to specify complementarity constraints. */
int ccTypes[3] = {KN_CCTYPE_VARVAR, KN_CCTYPE_VARVAR, KN_CCTYPE_VARVAR};
int indexComps1[3] = {2, 3, 4};
int indexComps2[3] = {5, 6, 7};
/** Solution information */
double x[8];
double objSol;
double feasError, optError;

/** Create a new Knitro solver instance. */
error = KN_new(&kc);
if (error) exit(-1);
if (kc == NULL)
{

printf ("Failed to find a valid license.\n");
return( -1 );

}

/** Initialize Knitro with the problem definition. */

/** Add the variables and set their bounds and initial values.

* Note: unset bounds assumed to be infinite. */
n = 8;
error = KN_add_vars(kc, n, NULL);

2.6. Complementarity constraints 71



Artelys Knitro Documentation, Release 11.0.0

if (error) exit(-1);
error = KN_set_var_lobnds_all(kc, xLoBnds);
if (error) exit(-1);
error = KN_set_var_primal_init_values_all(kc, xInitVals);
if (error) exit(-1);

/** Add the constraints and set their bounds. */
m = 4;
error = KN_add_cons(kc, m, NULL);
if (error) exit(-1);
error = KN_set_con_eqbnds_all(kc, cEqBnds);
if (error) exit(-1);

/** Add coefficients for all linear constraints at once. */

/** c0 */
lconIndexCons[0]=0; lconIndexVars[0]=0; lconCoefs[0]=-1.5;
lconIndexCons[1]=0; lconIndexVars[1]=1; lconCoefs[1]=2.0;
lconIndexCons[2]=0; lconIndexVars[2]=2; lconCoefs[2]=1.0;
lconIndexCons[3]=0; lconIndexVars[3]=3; lconCoefs[3]=-0.5;
lconIndexCons[4]=0; lconIndexVars[4]=4; lconCoefs[4]=1.0;

/** c1 */
lconIndexCons[5]=1; lconIndexVars[5]=0; lconCoefs[5]=3.0;
lconIndexCons[6]=1; lconIndexVars[6]=1; lconCoefs[6]=-1.0;
lconIndexCons[7]=1; lconIndexVars[7]=5; lconCoefs[7]=-1.0;

/** c2 */
lconIndexCons[8]=2; lconIndexVars[8]=0; lconCoefs[8]=-1.0;
lconIndexCons[9]=2; lconIndexVars[9]=1; lconCoefs[9]=0.5;
lconIndexCons[10]=2; lconIndexVars[10]=6; lconCoefs[10]=-1.0;

/** c3 */
lconIndexCons[11]=3; lconIndexVars[11]=0; lconCoefs[11]=-1.0;
lconIndexCons[12]=3; lconIndexVars[12]=1; lconCoefs[12]=-1.0;
lconIndexCons[13]=3; lconIndexVars[13]=7; lconCoefs[13]=-1.0;

error = KN_add_con_linear_struct (kc, 14, lconIndexCons, lconIndexVars,
lconCoefs);

if (error) exit(-1);

/** Note that the objective (x0 - 5)^2 + (2 x1 + 1)^2 when

* expanded becomes:

* x0^2 + 4 x1^2 - 10 x0 + 4 x1 + 26 */

/** Add quadratic coefficients for the objective */
qobjIndexVars1[0]=0; qobjIndexVars2[0]=0; qobjCoefs[0]=1.0;
qobjIndexVars1[1]=1; qobjIndexVars2[1]=1; qobjCoefs[1]=4.0;
error = KN_add_obj_quadratic_struct (kc, 2, qobjIndexVars1,

qobjIndexVars2, qobjCoefs);
if (error) exit(-1);

/** Add linear coefficients for the objective */
lobjIndexVars[0]=0; lobjCoefs[0]=-10.0;
lobjIndexVars[1]=1; lobjCoefs[1]=4.0;
error = KN_add_obj_linear_struct (kc, 2,

lobjIndexVars, lobjCoefs);
if (error) exit(-1);

72 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

/** Add constant to the objective */
error = KN_add_obj_constant (kc, 26.0);
if (error) exit(-1);

/** Set minimize or maximize (if not set, assumed minimize) */
error = KN_set_obj_goal(kc, KN_OBJGOAL_MINIMIZE);
if (error) exit(-1);

/** Now add the complementarity constraints */
error = KN_set_compcons (kc, 3, ccTypes, indexComps1, indexComps2);
if (error) exit(-1);

/** Solve the problem.

*
* Return status codes are defined in "knitro.h" and described

* in the Knitro manual. */
nStatus = KN_solve (kc);

/** Delete the Knitro solver instance. */
KN_free (&kc);

return( 0 );
}

Running this code produces an output similar to what we obtained with AMPL.

2.7 Nonlinear Least-Squares

Knitro provides a specialized API for nonlinear least-squares models of the following form:

min
𝑝

1

2
‖𝐹 (𝑝)‖22

s.t. 𝑝𝐿 ≤ 𝑝 ≤ 𝑝𝑈 ,

where 𝑝 is a parameter to be optimized and 𝐹 is a differentiable function, which is called a residual. This type of
problem appears very often in statistics, data-mining and machine learning. Using the nonlinear least-squares API,
you are able to model a nonlinear least-squares problem in standard form above and use the Gauss-Newton Hessian
option.

The Gauss-Newton Hessian provides a positive semi-definite Hessian approximation 𝐽(𝑝)′𝐽(𝑝) (where 𝐽(𝑝) is the
Jacobian matrix of the residual functions 𝐹 (𝑝)) at every iteration and has good local convergence properties in practice.
The Gauss-Newton Hessian option KN_HESSOPT_GAUSS_NEWTON, is the default Hessian option when using the
nonlinear least-squares API. The quasi-Newton Hessian options are also available through the least-squares API,
however, the user-supplied exact Hessian can only be specified using the standard API.

Any of the Knitro algorithms can be used through the least-squares API. Knitro will behave like a Gauss-Newton
method by using the linesearch methods algorithm = KN_ALG_BAR_DIRECT or KN_ALG_ACT_SQP, and will
be very similar to the classical Levenberg-Marquardt method when using the trust-region methods algorithm =
KN_ALG_BAR_CG or KN_ALG_ACT_CG.

Residuals are added to a least-squares model using the KN_add_rsds(). The coefficients and spar-
sity structure for linear residuals (or linear terms inside nonlinear residuals) can be provided to Knitro
throught the API function KN_add_rsd_linear_struct(). Constants can be added to residuals through
KN_add_rsd_constants(). The nonlinear residuals and Jacobian are provided to Knitro using the callback

2.7. Nonlinear Least-Squares 73



Artelys Knitro Documentation, Release 11.0.0

functions KN_add_lsq_eval_callback() and KN_set_cb_rsd_jac() described below. Each user call-
back routine should return an int value of 0 if successful, or a negative value to indicate that an error occurred during
execution of the user-provided function. If a callback function to evaluate the residual Jacobian is not provided, Knitro
will approximate it using finite-differences. Please see Callable library API reference for more details on these API
functions.

/** Set the callback function to evaluate the residuals "res" of a

* nonlinear least-squares problem.

* Do not modify "jac" in this function.

*/
int KNITRO_API KTR_lsq_set_res_callback(KTR_context_ptr kc,

KTR_lsq_callback * const fnPtr);

/** Add an evaluation callback for a least-squares models. Similar to KN_add_eval_
→˓callback()

* but for least-squares models.

*
* nR - number of residuals evaluated in the callback

* indexRsds - (length nR) index of residuals evaluated in the callback

* rsdCallback - a pointer to a function that evaluates any residual parts

* (specified by nR and indexRsds) involved in this callback

* cb - (output) the callback structure that gets created by

* calling this function; all the memory for this structure is

* handled by Knitro

*
* After a callback is created by "KN_add_lsq_eval_callback()", the user can then

* specify residual Jacobian information and structure through "KN_set_cb_rsd_jac()".

* If not set, Knitro will approximate the residual Jacobian. However, it is highly

* recommended to provide a callback routine to specify the residual Jacobian if at
→˓all

* possible as this will greatly improve the performance of Knitro. Even if a
→˓callback

* for the residual Jacobian is not provided, it is still helpful to provide the
→˓sparse

* Jacobian structure for the residuals through "KN_set_cb_rsd_jac()" to improve the

* efficiency of the finite-difference Jacobian approximation. Other optional

* information can also be set via "KN_set_cb_*() functions as detailed below.

*
* Returns 0 if OK, nonzero if error.

*/
int KNITRO_API KN_add_lsq_eval_callback ( KN_context_ptr kc,

const KNINT nR,
const KNINT * const indexRsds,

KN_eval_callback * const rsdCallback,
CB_context_ptr * const cb);

/** This API function is used to set the residual Jacobian structure and also

* (optionally) a callback function to evaluate the residual Jacobian provided

* through this callback.

*
* cb - a callback structure created from a previous call to

* KN_add_lsq_eval_callback()

* nnzJ - number of nonzeroes in the sparse residual Jacobian

* computed through this callback; set to KN_DENSE_ROWMAJOR to

* provide the full Jacobian in row major order (i.e. ordered

* by rows/residuals), or KN_DENSE_COLMAJOR to provide the full

* Jacobian in column major order (i.e. ordered by columns/

74 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

* variables)

* jacIndexRsds - (length nnzJ) residual index (row) of each nonzero;

* set to NULL if nnzJ=KN_DENSE_ROWMAJOR/KN_DENSE_COLMAJOR or
→˓nnzJ=0

* jacIndexVars - (length nnzJ) variable index (column) of each nonzero;

* set to NULL if nnzJ=KN_DENSE_ROWMAJOR/KN_DENSE_COLMAJOR or
→˓nnzJ=0

* rsdJacCallback - a pointer to a function that evaluates any residual Jacobian

* parts involved in this callback; set to NULL if using a
→˓finite-

* difference Jacobian approximation (specified via KN_set_cb_
→˓gradopt())

*
* The user should generally always try to define the sparsity structure

* for the Jacobian ("nnzJ", "jacIndexRsds", "jacIndexVars"). Even when

* using a finite-difference approximation to compute the Jacobian, knowing the

* sparse structure of the Jacobian can allow Knitro to compute this

* finite-difference approximation faster. However, if the user is unable to

* provide this sparsity structure, then one can set "nnzJ" to KN_DENSE_ROWMAJOR or

* KN_DENSE_COLMAJOR and set "jacIndexRsds" and "jacIndexVars" to NULL.

*/
int KNITRO_API KN_set_cb_rsd_jac ( KN_context_ptr kc,

CB_context_ptr cb,
const KNLONG nnzJ, /* or KN_

→˓DENSE_* */
const KNINT * const jacIndexRsds,
const KNINT * const jacIndexVars,

KN_eval_callback * const rsdJacCallback); /
→˓* nullable *

There is currently no callback for the exact Hessian in the least-squares API. If you wish to provide a callback for the
user-supplied exact Hessian, you must use the standard API.

After solving, the residuals and residual Jacobian can be retrieved through the API functions
KN_get_rsd_values() and KN_get_rsd_jacobian_values(). See Callable library API reference
for more details.

2.7.1 C example

The following C example illustrates how to use the Knitro least squares interface.

/* A simple nonlinear least-squares problem with 6 residual functions:

*
* min ( x0*1.309^x1 - 2.138 )^2 + ( x0*1.471^x1 - 3.421 )^2

* + ( x0*1.49^x1 - 3.597 )^2 + ( x0*1.565^x1 - 4.34 )^2

* + ( x0*1.611^x1 - 4.882 )^2 + ( x0*1.68^x1-5.66 )^2

*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "knitro.h"

int callbackEvalR (KN_context_ptr kc,
CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,

2.7. Nonlinear Least-Squares 75



Artelys Knitro Documentation, Release 11.0.0

KN_eval_result_ptr const evalResult,
void * const userParams)

{
const double *x;
double *rsd;

if (evalRequest->type != KN_RC_EVALR)
{

printf ("*** callbackEvalR incorrectly called with eval type %d\n",
evalRequest->type);

return( -1 );
}
x = evalRequest->x;
rsd = evalResult->rsd;

/** Evaluate nonlinear residual components */
rsd[0] = x[0] * pow(1.309, x[1]);
rsd[1] = x[0] * pow(1.471, x[1]);
rsd[2] = x[0] * pow(1.49, x[1]);
rsd[3] = x[0] * pow(1.565, x[1]);
rsd[4] = x[0] * pow(1.611, x[1]);
rsd[5] = x[0] * pow(1.68, x[1]);

return( 0 );
}

int callbackEvalRJ (KN_context_ptr kc,
CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,
KN_eval_result_ptr const evalResult,
void * const userParams)

{
const double *x;
double *rsdJac;

if (evalRequest->type != KN_RC_EVALRJ)
{

printf ("*** callbackEvalRJ incorrectly called with eval type %d\n",
evalRequest->type);

return( -1 );
}
x = evalRequest->x;
rsdJac = evalResult->rsdJac;

/** Evaluate non-zero residual Jacobian elements (row major order). */
rsdJac[0] = pow(1.309, x[1]);
rsdJac[1] = x[0] * log(1.309) * pow(1.309, x[1]);
rsdJac[2] = pow(1.471, x[1]);
rsdJac[3] = x[0] * log(1.471) * pow(1.471, x[1]);
rsdJac[4] = pow(1.49, x[1]);
rsdJac[5] = x[0] * log(1.49) * pow(1.49, x[1]);
rsdJac[6] = pow(1.565, x[1]);
rsdJac[7] = x[0] * log(1.565) * pow(1.565, x[1]);
rsdJac[8] = pow(1.611, x[1]);
rsdJac[9] = x[0] * log(1.611) * pow(1.611, x[1]);
rsdJac[10] = pow(1.68, x[1]);
rsdJac[11] = x[0] * log(1.68) * pow(1.68, x[1]);

76 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

return( 0 );
}

int main (int argc, char *argv[])
{

/** Declare variables. */
KN_context *kc;
int i, error;
int n, m;
/** Used to set constants for residuals */
double constants[6] = {-2.138, -3.421, -3.597, -4.34, -4.882, -5.66};
/** Pointer to structure holding information for evaluation

* callbacks. */
CB_context *cb;
/** Solution information. */
int nRC, nStatus;
double x[2];
double obj;

/** Create a new Knitro solver instance. */
error = KN_new(&kc);
if (error) exit(-1);
if (kc == NULL)
{

printf ("Failed to find a valid license.\n");
return( -1 );

}

/** Add the variables/parameters.

* Note: Any unset lower bounds are assumed to be

* unbounded below and any unset upper bounds are

* assumed to be unbounded above. */
n = 2; /* # of variables/parameters */
error = KN_add_vars(kc, n, NULL);
if (error) exit(-1);

/** Add the residuals. */
m = 6; /* # of residuals */
error = KN_add_rsds(kc, m, NULL);
if (error) exit(-1);

/** Set the array of constants in the residuals */
error = KN_add_rsd_constants_all(kc, constants);
if (error) exit(-1);

/** Add a callback function "callbackEvalR" to evaluate the nonlinear

* residual components. Note that the constant terms are added

* separately above, and will not be included in the callback. */
error = KN_add_lsq_eval_callback_all (kc, callbackEvalR, &cb);
if (error) exit(-1);

/** Also add a callback function "callbackEvalRJ" to evaluate the

* Jacobian of the residuals. If not provided, Knitro will approximate

* the residual Jacobian using finite-differencing. However, we recommend

* providing callbacks to evaluate the exact Jacobian whenever

* possible as this can drastically improve the performance of Knitro.

* We specify the residual Jacobian in "dense" row major form for simplicity.

* However for models with many sparse residuals, it is important to specify

2.7. Nonlinear Least-Squares 77



Artelys Knitro Documentation, Release 11.0.0

* the non-zero sparsity structure of the residual Jacobian for efficiency

* (this is true even when using finite-difference gradients). */
error = KN_set_cb_rsd_jac (kc, cb, KN_DENSE_ROWMAJOR, NULL, NULL, callbackEvalRJ);
if (error) exit(-1);

/** Solve the problem.

*
* Return status codes are defined in "knitro.h" and described

* in the Knitro manual.

*/
nRC = KN_solve (kc);

/** Delete the knitro solver instance. */
KN_free (&kc);

return( 0 );
}

2.8 Algorithms

Knitro implements four state-of-the-art interior-point and active-set methods for solving continuous, nonlinear opti-
mization problems. Each algorithm possesses strong convergence properties and is coded for maximum efficiency
and robustness. However, the algorithms have fundamental differences that lead to different behavior on nonlinear
optimization problems. Together, the four methods provide a suite of different ways to attack difficult problems.

We encourage the user to try all algorithmic options to determine which one is more suitable for the application at
hand.

2.8.1 Overview

The table below presents a brief overview of the main features included in the four NLP algorithms.

Features Interior-Point/Direct Interior-
Point/Conjugate-
Gradient

Sequential Linear
Quadratic
Programming

Sequential
Quadratic
Programming

Large scale ++ (sparse) ++ (sparse or dense) +
Expensive
evaluations

+ ++

Warm-start + + ++ ++
Least
square
problems

++ ++ + +

Globaliza-
tion
technique

Line-search/Trust-
region

Trust-region Trust-region Line-search/Trust-
region

Linear
solver

Lapack QR,
MA27/57/86/97,
MKL PARDISO

Lapack QR,
MA27/57/86/97,
MKL PARDISO

Lapack QR,
MA27/57/86/97,
MKL PARDISO

Lapack QR,
MA27/57/86/97,
MKL PARDISO

LP solver - - Clp (incl.) or
Xpress/Cplex (not
incl.)

Clp (incl.) or
Xpress/Cplex (not
incl.)

QP solver - - - IP/Direct or IP/CG or
SLQP

78 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

• Large scale: ability to solve large scale problems

• Expensive evaluations: performance on problems with expensive function evalutations

• Warm-start: ability to warm-start

• Least square problems: performance on least square problems

• Globalization technique: method used to improve the likelihood of convergence from any initial point. This is
not related to finding a global optima of the optimized function.

• Linear solver: solvers available for the resolution of internal linear systems

• LP solver: solvers available for the resolution of linear subproblems

• QP solver: solvers available for the resolution of quadratic subproblems

2.8.2 Algorithms description

This section only describes the four algorithms implemented in Knitro in very broad terms. For details, please see the
Bibliography.

• Interior/Direct algorithm

Interior-point methods (also known as barrier methods) replace the nonlinear programming problem
by a series of barrier subproblems controlled by a barrier parameter. Interior-point methods perform
one or more minimization steps on each barrier subproblem, then decrease the barrier parameter
and repeat the process until the original problem has been solved to the desired accuracy. The Inte-
rior/Direct method computes new iterates by solving the primal-dual KKT matrix using direct linear
algebra. The method may temporarily switch to the Interior/CG algorithm, described below, if it
encounters difficulties.

• Interior/CG algorithm

This method is similar to the Interior/Direct algorithm. It differs mainly in the fact that the primal-
dual KKT system is solved using a projected conjugate gradient iteration. This approach differs
from most interior-point methods proposed in the literature. A projection matrix is factorized and
the conjugate gradient method is applied to approximately minimize a quadratic model of the barrier
problem. The use of conjugate gradients on large-scale problems allows Knitro to utilize exact sec-
ond derivatives without explicitly forming or storing the Hessian matrix. An incomplete Cholesky
preconditioner can be computed and applied during the conjugate gradient iterations for problems
with equality and inequality constraints. This generally results in improved performances in terms of
number of conjugate gradient iterations and CPU time.

• Active Set algorithm

Active set methods solve a sequence of subproblems based on a quadratic model of the original
problem. In contrast with interior-point methods, the algorithm seeks active inequalities and follows
a more exterior path to the solution. Knitro implements a sequential linear-quadratic programming
(SLQP) algorithm, similar in nature to a sequential quadratic programming method but using linear
programming subproblems to estimate the active set. This method may be preferable to interior-
point algorithms when a good initial point can be provided; for example, when solving a sequence of
related problems. Knitro can also “crossover” from an interior-point method and apply Active Set to
provide highly accurate active set and sensitivity information.

• Sequential Quadratic Programming (SQP) algorithm

The SQP method in Knitro is an active-set method that solves a sequence of quadratic programming
(QP) subproblems to solve the problem. This method is primarily designed for small to medium
scale problems with expensive function evaluations – for example, problems where the function
evaluations involve performing expensive black-box simulations and/or derivatives are computed

2.8. Algorithms 79



Artelys Knitro Documentation, Release 11.0.0

via finite-differencing. The SQP iteration is expensive since it involves solving a QP subproblem.
However, it often converges in the fewest number of function/gradient evaluations, which is why this
method is often preferable for situations where the evaluations are the dominant cost of solving the
model.

Note: For mixed integer programs (MIPs), Knitro provides two variants of the branch and bound algorithm that rely
on the previous four algorithms to solve the continuous (relaxed) subproblems. The first is a standard branch and
bound implementation, while the second is specialized for convex, mixed integer nonlinear problems. A third method
(MISQP) extends the SQP method for continuous, nonlinear optimization to the case where there are integer variables.

2.8.3 Algorithm choice

• Automatic

By default, Knitro automatically tries to choose the best algorithm for a given problem based on
problem characteristics.

However, we strongly encourage you to experiment with all the algorithms as it is difficult to predict
which one will work best on any particular problem.

• Interior/Direct

This algorithm often works best, and will automatically switch to Interior/CG if the direct step is
suspected to be of poor quality, or if negative curvature is detected. Interior/Direct is recommended
if the Hessian of the Lagrangian is ill-conditioned. The Interior/CG method in this case will often
take an excessive number of conjugate gradient iterations. It may also work best when there are
dependent or degenerate constraints. Choose this algorithm by setting user option algorithm = 1.

We encourage you to experiment with different values of the bar_murule option when using the Inte-
rior/Direct or Interior/CG algorithm. It is difficult to predict which update rule will work best on a
problem.

Note: Since the Interior/Direct algorithm in Knitro requires the explicit storage of a Hessian matrix,
this algorithm only works with Hessian options (hessopt) 1, 2, 3, or 6. It may not be used with
Hessian options 4 or 5 (where only Hessian-vector products are performed) since they do not supply
a full Hessian matrix.

• Interior/CG

This algorithm is well-suited to large problems because it avoids forming and factorizing the Hessian
matrix. Interior/CG is recommended if the Hessian is large and/or dense. It works with all Hessian
options. Choose this algorithm by setting user option algorithm = 2.

We encourage you to experiment with different values of the bar_murule option when using the
Interior/Direct or Interior/CG algorithm. It is difficult to predict which update rule will work best on
a problem.

• Active Set:

This algorithm is fundamentally different from interior-point methods. The method is efficient and
robust for small and medium-scale problems, but is typically less efficient than the Interior/Direct
and Interior/CG algorithms on large-scale problems (many thousands of variables and constraints).
Active Set is recommended when “warm starting” (i.e., when the user can provide a good initial
solution estimate, for example, when solving a sequence of closely related problems). This algorithm

80 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

is also best at rapid detection of infeasible problems. Choose this algorithm by setting user option
algorithm = 3.

• SQP

This algorithm is best suited to small problems where the function and derivative evaluations are the
dominant cost. Like the active-set method above, this method can converge quickly when a good
initial solution estimate is provided.

Choose this algorithm by setting user option algorithm = 4.

Note: Since the SQP algorithm in Knitro currently requires the explicit storage of a Hessian matrix,
this algorithm only works with Hessian options (hessopt) 1, 2, 3, or 6. It may not be used with
Hessian options 4 or 5 (where only Hessian-vector products are performed) since they do not supply
a full Hessian matrix.

• Multi Algorithm:

This option runs all four algorithms above either sequentially or in parallel. It can be selected by
setting user option algorithm = 5 and is explained in more detail below.

2.8.4 Multiple algorithms

Setting user option algorithm = 5 (KN_ALG_MULTI), allows you to easily run all four Knitro algorithms. The
algorithms will run either sequentially or in parallel depending on the setting of par_numthreads (see Parallelism).

The user option ma_terminate controls how to terminate the multi-algorithm (“ma”) procedure. If
ma_terminate = 0, the procedure will run until all four algorithms have completed (if multiple optimal solu-
tion are found, Knitro will return the one with the best objective value). If ma_terminate = 1, the procedure will
terminate as soon as the first local optimal solution is found. If ma_terminate = 2, the procedure will stop at the
first feasible solution estimate. If ma_terminate = 3, the procedure will stop as soon as any of the algorithms
terminate for any reason. If you are not sure which algorithm works best for your application, a recommended strategy
is to set algorithm = 5 with ma_terminate = 1 (this is particularly advantageous if it can be done in parallel).

The user options ma_maxtime_cpu and ma_maxtime_real place overall time limits on the total multi-algorithm
procedure while the options maxtime_cpu and maxtime_real impose time limits for each algorithm solve.

The output from each algorithm can be written to a file named knitro_ma_x.log where “x” is the algorithm
number by setting the option ma_outsub =1.

2.8.5 Crossover

Interior-point (or barrier) methods are a powerful tool for solving large-scale optimization problems. However, one
drawback of these methods is that they do not always provide a clear picture of which constraints are active at the
solution. In general they return a less exact solution and less exact sensitivity information. For this reason, Knitro
offers a crossover feature in which the interior-point method switches to the Active Set method at the interior-point
solution estimate, in order to “clean up” the solution and provide more exact sensitivity and active set information.

The crossover procedure is controlled by the bar_maxcrossit user option. If this parameter is greater than 0, then
Knitro will attempt to perform bar_maxcrossit Active Set crossover iterations after the interior-point method
has finished, to see if it can provide a more exact solution. This can be viewed as a form of post-processing. If
bar_maxcrossit is not positive, then no crossover iterations are attempted.

The crossover procedure will not always succeed in obtaining a more exact solution compared with the interior-point
solution. If crossover is unable to improve the solution within bar_maxcrossit crossover iterations, then it will
restore the interior-point solution estimate and terminate. If outlev is greater than one, Knitro will print a message

2.8. Algorithms 81



Artelys Knitro Documentation, Release 11.0.0

indicating that it was unable to improve the solution. For example, if bar_maxcrossit = 3 and the crossover
procedure did not succeed, the message will read:

Crossover mode unable to improve solution within 3 iterations.

In this case, you may want to increase the value of bar_maxcrossit and try again. If Knitro determines that the
crossover procedure will not succeed, no matter how many iterations are tried, then a message of the form

Crossover mode unable to improve solution.

will be printed.

The extra cost of performing crossover is problem dependent. In most small or medium scale problems, the crossover
cost is a small fraction of the total solve cost. In these cases it may be worth using the crossover procedure to obtain a
more exact solution. On some large scale or difficult degenerate problems, however, the cost of performing crossover
may be significant. It is recommended to experiment with this option to see whether improvement in the exactness of
the solution is worth the additional cost.

2.9 Feasibility and infeasibility

This section deals with the issue of infeasibility or inability to converge to a feasible solution, and with options offered
by Knitro to ensure that the iterates taken from the initial points to the solution remain feasible. This can be useful
when, for instance, certain functions are not defined outside a given domain and the user wants to prevent the algorithm
from evaluating these functions at certains points.

2.9.1 Infeasibility

Knitro is a solver for finding local solutions to general nonlinear, possibly nonconvex problems. Just as Knitro may
converge to a local solution that is not the global solution, it is also possible for a nonlinear optimization solver to
converge to a locally infeasible point or infeasible stationary point on nonconvex problems. That is, even if the user’s
model is feasible, a nonlinear solver can converge to a point where the model is locally infeasible. At this point, a
move in any direction will increase some measure of infeasibility and thus a local solver cannot make any further
progress from such a point. Just as only a global optimization solver can guarantee that it will locate the globally
optimal solution, only a global solver can also avoid the possibility of converging to these locally infeasible points.

If your problem is nonconvex and the Knitro termination message indicates that it has converged to an infeasible point,
then you should try running Knitro again from a different starting point (preferably one close to the feasible region).
Alternatively, you can use the Knitro multi-start feature which will automatically try to run Knitro several times from
different starting points, to try to avoid getting stuck at locally infeasible points.

If you are using one of the interior-point algorithms in Knitro, and Knitro is struggling to find a feasible point, you
can try different settings for the bar_feasible user option to place special emphasis on obtaining feasibility, as
follows.

2.9.2 Feasibility options

Knitro offers an option bar_feasible that can force iterates to stay feasible with respect to inequality constraints
or can place special emphasis on trying to get feasible.

If bar_feasible = 1 or bar_feasible = 3 Knitro will seek to generate iterates that satisfy the inequalities by
switching to a feasible mode of operation, which alters the manner in which iterates are computed. The option does
not enforce feasibility with respect to equality constraints, as this would impact performance too much.

82 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

In order to enter feasible mode, the initial point must satisfy all the inequalities to a sufficient degree; if not, Knitro
may generate infeasible iterates and does not switch to the feasible mode until a sufficiently feasible point is found
(with respect to the inequalities). We say sufficient satisfaction occurs at a point x if it is true for all inequalities that:

𝑐𝐿 + 𝑡𝑜𝑙 ≤ 𝑐(𝑥) ≤ 𝑐𝑈 − 𝑡𝑜𝑙

The constant tol>0 is determined by the option bar_feasmodetol; its default value is 1.0e-4. Feasible mode
becomes active once an iterate x satisfies this condition for all inequality constraints. If the initial point satisfies this
condition, then every iterate will be feasible with respect to the inequalities.

Knitro can also place special emphasis on getting feasible (with respect to all constraints) through the option
bar_feasible. If bar_feasible = 2 or bar_feasible = 3, Knitro will first place special emphasis on
getting feasible before working on optimality. This option is not always guaranteed to accelerate the finding of a
feasible point. However, it may do a better job of obtaining feasibility on difficult problems where the default version
struggles.

Note: This option can only be used with the Interior/Direct and Interior/CG algorithms.

2.9.3 Honor bounds mode

In some applications, the user may want to enforce that the initial point and all subsequent iterates satisfy the simple
bounds:

𝑏𝐿 ≤ 𝑥 ≤ 𝑏𝑈 .

For instance, if the objective function or a nonlinear constraint function is undefined at points outside the bounds, then
the bounds should be enforced at all times.

By default, Knitro enforces bounds on the variables only for the initial start point and the final solution (honorbnds
= 2). To enforce satisfaction at all iterates, set honorbnds = 1. To allow execution from an initial point that violates
the bounds, set honorbnds = 0.

In addition, the API function KN_set_var_honorbnds() can be used to set this option individually for each
variable (as opposed to the global honorbnds option which applies to all variables). The settings through this API
function will override the setting through the global honorbnds user option.

2.10 Parallelism

Knitro offers several features to exploit parallel computations on shared memory multi-processor machines. These
features are implemented using OpenMP.

Note: The parallel features offered through Knitro are not available through all interfaces. Check with your modeling
language vendor to see if these features are included. The parallel features are included in the AMPL interface, the
object-oriented interfaces, and through the callable library. Parallel features are also available through the MATLAB
interface, but some may be less efficient in this environment.

Knitro offers the following parallel features:

2.10. Parallelism 83



Artelys Knitro Documentation, Release 11.0.0

2.10.1 Parallel Finite-Difference Gradients

As described in Derivatives, if you are unable to provide the exact first derivatives, Knitro offers the option to approx-
imate first derivatives using either a forward or central finite-difference approach, by setting the option gradopt.
Knitro will compute these finite difference gradient values in parallel if the user specifies that Knitro should use mul-
tiple threads through the option par_numthreads (see below). This parallel feature only applies to first derivative
finite-difference evaluations.

Note: In the Knitro-MATLAB interface, the parallel finite-difference feature is controlled by the UseParallel MAT-
LAB option, rather than the Knitro par_numthreads option. See Knitro / MATLAB reference for more information.

2.10.2 Parallel Multistart

The multistart procedure described in Multistart can run in parallel by setting par_numthreads to use multiple
threads.

When the multistart procedure is run in parallel, Knitro will produce the same sequence of initial points and solves
that you see when running multistart sequentially (though, perhaps, not in the same order).

Therefore, as long as you run multistart to completion (ms_terminate =0) and use the deterministic option
(ms_deterministic =1), you should visit the same initial points encountered when running multistart sequen-
tially, and get the same final solution. By default ms_terminate =0 and ms_deterministic =1 so that the
parallel multistart produces the same solution as the sequential multistart.

However, if ms_deterministic =0, or ms_terminate >0, there is no guarantee that the final solution reported
by multistart will be the same when run in parallel compared to the solution when run sequentially, and even the
parallel solution may change when run at different times.

The option par_msnumthreads can be used to set the number of threads used by the multistart procedure. For
instance, if par_numthreads =16 and par_msnumthreads =8, Knitro will run 8 solves in parallel and each
solve will be allocated 2 threads.

2.10.3 Parallel Algorithms

If the user option alg is set to multi, then Knitro will run all four algorithms (see Algorithms). When
par_numthreads is set to use multiple threads, the four Knitro algorithms will run in parallel. The termination of
the parallel algorithms procedure is controlled by the user option ma_terminate. See Algorithms for more details
on the multi algorithm procedure.

2.10.4 Parallel Tuning

The Knitro-Tuner can help you identify some non-default options settings that may improve performance on a particu-
lar model or set of models. When par_numthreads is set to use multiple threads, Knitro will test the Tuner options
in parallel.

2.10.5 Parallel Basic Linear Algebra Subroutine (BLAS)

The Knitro algorithms - in particular the interior-point/barrier algorithms - rely heavily on BLAS operations (e.g. dot
products of vectors, dense matrix-matrix and matrix-vector products, etc.). For large-scale problems, these operations
may often take 35%-50% of the overall solution time, and sometimes more.

84 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

These operations can be computed in parallel using multiple threads by setting the user option
par_blasnumthreads >1 (by default par_blasnumthreads =1). This option is currently only active
when using the default Intel BLAS (blasoption =1) provided with Knitro.

2.10.6 Parallel Sparse Linear System Solves

The primary computational cost each iteration in the Knitro interior-point algorithms is the solution of a linear system
of equations. The linsolver user option specifies the linear system, solver to use. You can use the multi-threaded
Intel MKL PARDISO solver in Knitro by choosing linsolver =6. By default the Intel MKL PARDISO solver will
use one thread, however, it can solve linear systems in parallel by choosing par_lsnumthreads >1 (in combination
with linsolver =6). It is also possible to use par_lsnumthreads >1 with the linear solvers MA86 and MA97.

Note: Generally you should not use BOTH parallel BLAS and a parallel linear solver as they may conflict with each
other. If par_blasnumthreads >1 one should set par_lsnumthreads =1 and vise versa.

2.10.7 Parallel Options

Option Meaning
par_numthreads Specifies the max number of threads to use for all parallel features. You can just set this

and let Knitro decide how to distribute the threads.
par_concurrent_evalsWhether or not to allow concurrent evaluations
par_blasnumthreadsSpecifies the number of threads to use for parallel BLAS (when blasoption =1)
par_lsnumthreadsSpecifies the number of threads to use for parallel linear system solves (when linsolver

=6)
par_msnumthreadsSpecifies the number of threads to use for the parallel multi-start procedure.

The user option par_numthreads is used to determine the number of threads Knitro can use for all parallel compu-
tations. Knitro will decide how to apply the threads. If par_numthreads > 0, then the number of threads is deter-
mined by the value of par_numthreads. If par_numthreads = 0, then the number of threads is determined by
the value of the environment variables OMP_NUM_THREADS. If par_numthreads = 0 and OMP_NUM_THREADS
is not set, then the number of threads to use will be automatically deteremined by OpenMP. If par_numthreads <
0, Knitro will run in sequential mode.

Generally, if you are unsure of how best to apply parallel threads in Knitro you should just set the general option
par_numthreads to the maximum number of threads you want Knitro to use, and leave par_blasnumthreads
and par_lsnumthreads at their default values. Then Knitro will try to allocate work to these different threads in
the most sensible way. Typically, if you are performing a single solve, the threads will get applied to the BLAS
operations. If, for example, you are using multi-start then the multi-start solves are run in parallel but BLAS is
sequential (typically applying 2 layers of parallelism is not good).

The options par_blasnumthreads and par_lsnumthreads allow the expert user more fine-grained control
over parallelism of these specific features.

The user option par_blasnumthreads is used to determine the number of threads Knitro can use for parallel
BLAS computations. This option is only active when using the default Intel BLAS (blasoption =1). The do-
main specific par_blasnumthreads, will override the general thread setting specified by par_numthreads
for BLAS operations.

The user option par_lsnumthreads is used to determine the number of threads Knitro can use for parallel linear
system solves. This option is only active when using the Intel MKL PARDISO linear solver (linsolver =6), the
HSL MA97 linear solver (linsolver =7) and the HSL MA86 linear solver (linsolver =8). The domain specific
par_lsnumthreads, will override the general thread setting specified by par_numthreads for linear system
solve operations.

2.10. Parallelism 85



Artelys Knitro Documentation, Release 11.0.0

The user option par_msnumthreads is used to determine the number of threads to use for the multi-start procedure.
See Multistart for more details.

The user option par_concurrent_evals determines whether or not the user provided callback functions used
for function and derivative evaluations can take place concurrently in parallel (for possibly different values of “x”). If
it is not safe to have concurrent evaluations, then setting par_concurrent_evals =0, will put these evaluations
in a critical region so that only one evaluation can take place at a time. If par_concurrent_evals =1 then
concurrent evaluations are allowed when Knitro is run in parallel, and it is the responsibility of the user to ensure that
these evaluations are stable.

Preventing concurrent evaluations will decrease the efficiency of the parallel features, particularly when the evaluations
are expensive or there are many threads and these evaluations create a bottleneck.

2.10.8 AMPL example

Let us consider again our AMPL example from Section Getting started with AMPL and run it with the parallel multi
algorithm procedure. We specify that Knitro should run in parallel with four threads (one for each algorithm):

1 ampl: reset;
2 ampl: option solver knitroampl;
3 ampl: option knitro_options "alg=5 ma_terminate=0 par_numthreads=4";
4 ampl: model testproblem.mod;
5 ampl: solve;

The Knitro log printed to the screen shows the results of each algorithm (one per line):

1 =======================================
2 Commercial License
3 Artelys Knitro 11.0.0
4 =======================================
5

6 Knitro presolve eliminated 0 variables and 0 constraints.
7

8 algorithm: 5
9 datacheck: 0

10 hessian_no_f: 1
11 ma_terminate: 0
12 par_concurrent_evals: 0
13 par_numthreads: 4
14

15 Problem Characteristics ( Presolved)
16 -----------------------
17 Objective goal: Minimize
18 Objective type: quadratic
19 Number of variables: 3 ( 3)
20 bounded below only: 3 ( 3)
21 bounded above only: 0 ( 0)
22 bounded below and above: 0 ( 0)
23 fixed: 0 ( 0)
24 free: 0 ( 0)
25 Number of constraints: 2 ( 2)
26 linear equalities: 1 ( 1)
27 quadratic equalities: 0 ( 0)
28 gen. nonlinear equalities: 0 ( 0)
29 linear one-sided inequalities: 0 ( 0)
30 quadratic one-sided inequalities: 1 ( 1)
31 gen. nonlinear one-sided inequalities: 0 ( 0)

86 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

32 linear two-sided inequalities: 0 ( 0)
33 quadratic two-sided inequalities: 0 ( 0)
34 gen. nonlinear two-sided inequalities: 0 ( 0)
35 Number of nonzeros in Jacobian: 6 ( 6)
36 Number of nonzeros in Hessian: 5 ( 5)
37

38 Knitro running multiple algorithms in parallel with 4 threads.
39

40 Alg Status Objective FeasError OptError Real Time
41 -------- --------- -------------- ---------- ---------- ----------
42 2 0 9.360000e+02 0.000e+00 1.945e-07 0.002
43 1 0 9.360000e+02 6.738e-08 6.614e-08 0.002
44 4 0 9.360000e+02 0.000e+00 2.387e-12 0.005
45 3 0 9.360000e+02 0.000e+00 0.000e+00 0.010
46 Multiple algorithms stopping, all solves have completed.
47

48 EXIT: Locally optimal solution found.
49

50 Final Statistics
51 ----------------
52 Final objective value = 9.35999997829394e+02
53 Final feasibility error (abs / rel) = 6.74e-08 / 5.18e-09
54 Final optimality error (abs / rel) = 6.61e-08 / 4.13e-09
55 # of iterations = 16
56 # of CG iterations = 12
57 # of function evaluations = 28
58 # of gradient evaluations = 24
59 # of Hessian evaluations = 16
60 Total program time (secs) = 0.01169 ( 0.023 CPU time)
61

62 ===============================================================================
63

64 Knitro 11.0.0: Locally optimal or satisfactory solution.
65 objective 935.9999978293937; feasibility error 6.74e-08
66 16 iterations; 28 function evaluations

As can be seen, all four Knitro algorithms solve the problem and find the same local solution. However, the two
interior-point algorithms (alg=1 and 2) are the fastest.

2.10.9 C example

As an example, the C example can also be easily modified to enable parallel multi-algorithms by adding the following
lines before the call to KN_solve():

// parallelism
if (KN_set_int_param_by_name (kc, "algorithm", KN_ALG_MULTI) != 0)
exit( -1 );
if (KN_set_int_param_by_name (kc, "ma_terminate", 0) != 0)
exit( -1 );
if (KN_set_int_param_by_name (kc, "par_numthreads", 4) != 0)
exit( -1 );

Again, running this example we get a Knitro log that looks simlar to what we observed with AMPL.

2.10. Parallelism 87



Artelys Knitro Documentation, Release 11.0.0

2.11 The Knitro-Tuner

The Knitro-Tuner can help you identify some non-default options settings that may improve performance on a partic-
ular model or set of models. This section desribes how to use the Knitro-Tuner.

2.11.1 Default Tuning

If you are unsure about what Knitro options should be tuned to try to improve performance, then you can simply run
the default Knitro-Tuner by setting the option tuner =1, when running Knitro on your model. This will cause Knitro
to automatically run your model with a variety of automatically determined option settings, and report some statistics
at the end. Any Knitro options that have been set in the usual way will remain fixed throughout the tuning procedure.

2.11.2 Custom Tuning

If you have some ideas about which Knitro options you want to tune, then you can tell Knitro which options you want
it to tune (as well as specify the values for particular options that you want Knitro to explore). This can be done by
specifying a Tuner options file. A Tuner options file is a simple text file that is similar to a standard Knitro options file
(see Setting options for details on how to define a standard Knitro options file).

A Tuner options file differs from a standard Knitro options file in a few ways:

1. You can define multiple values (separated by spaces) for each option. This tells Knitro the values you want it to
explore.

2. You can specify an option name without any values. This will tell Knitro to explore all possible option values
for that option. This only works for options that have a finite set of possible option value settings.

3. A Tuner options file is loaded through the API function KN_load_tuner_file() if using the callable
library API (procedures for loading a Tuner options file for other environments are demonstrated in the examples
below).

All possible combinations of options/values specified in a Tuner options file will be explored by Knitro, while any
Knitro options that have been set in the usual way will remain fixed throughout the tuning procedure.

An example of using the Knitro-Tuner and defining a Tuner options file is provided in examples/C in the Knitro
distribution. Below is the Tuner options file from that example.

# This file is used to specify the options and option values
# that will be systematically explored by the Knitro-Tuner
# in "tunerExample.c". One can specify the specific option
# values to be explored by a particular option (as with
# "bar_directinterval" and "linsolver_pivottol" below). If
# just the option name is listed (as with "algorithm" and
# "bar_murule"), then all values for that option will be
# explored (only for options that have a finite number of
# integer values).

algorithm
bar_directinterval 0 1 10
bar_murule
linsolver_pivottol 1e-8 1e-14

This options file tells the Knitro-Tuner to explore all possible option values for the algorithm and bar_murule
options, while exploring three values (0, 1 and 10) for the bar_directinterval option and two values (1e-8 and
1e-14) for the linsolver_pivottol option.

88 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

2.11.3 Tuner Output

The Tuner output, by default, provides a summary line of output for each solve during the tuning process indicating
the results of that particular solve. When the Tuner completes all solves, it reports the non-default option settings for
the fastest solve. Perhaps more insightful, however, is a summary table of statistics provided by the Tuner at the end
of the solve. For example, in the example provided in examples/C, we may see something like this:

Summary Statistics
---------------------------------------------------------------------------

Percent Average Average
Option Name Value #Runs Optimal #FuncEvals Time

-------------------- ---------- -------- ------- ---------- ----------
bar_directinterval 0 24 100.00 12.2 0.001
bar_directinterval 1 24 100.00 7.9 0.001
bar_directinterval 10 24 100.00 7.9 0.001

-------------------- ---------- -------- ------- ---------- ----------
bar_murule 1 12 100.00 8.7 0.001
bar_murule 2 12 100.00 7.5 0.001
bar_murule 3 12 100.00 9.7 0.001
bar_murule 4 12 100.00 9.5 0.001
bar_murule 5 12 100.00 10.3 0.001
bar_murule 6 12 100.00 10.5 0.001

-------------------- ---------- -------- ------- ---------- ----------
linsolver_pivottol 1.00e-08 38 100.00 9.1 0.001
linsolver_pivottol 1.00e-14 38 100.00 9.1 0.001

-------------------- ---------- -------- ------- ---------- ----------
algorithm 1 36 100.00 12.7 0.002
algorithm 2 36 100.00 6.0 0.001
algorithm 3 2 100.00 5.0 0.002
algorithm 4 2 100.00 3.0 0.011

---------------------------------------------------------------------------

This table indicates the option values explored, the number of Tuner runs for each option value, the percentage of
those runs where it found an optimal solution, the average number of function evaluations (in the cases where it found
an optimal solution), and the average time (in the cases where it found an optimal solution). In this particular example,
the model tested is very small, so the solution times are generally near 0.

This summary table provides some global view of which option settings may be preferable. For example, the table
above suggests that algorithm =2 may be preferable for models of this type since it (on average) requires a little
less time to find an optimal solution. Although if function evaluations were the dominant cost, then algorithm =4
might be preferable. The table also suggests that perhaps the non-default setting bar_murule =2 should be used,
since it requires, on average, the fewest number of function evaluations to converge, although other values are only
slightly worse.

More detailed output can be obtained through non-default settings of tuner_outsub. In particular, if
tuner_outsub =1, then a summary file called knitro_tuner_summary.log is created in the current
folder/directory. Each line of this file shows the option settings used and the summary results with these settings.
A corresponding file called knitro_tuner_summary.csv is also created, which allows easily reading these re-
sults into a spreadsheet. Additionally, if tuner_outsub =2, the individual output file for each tuner solve is created
in a file called knitro_tuner_*.log, where * is the corresponding solve number.

2.11.4 Tuner Options

The following options may be used to customize the performance of the Knitro-Tuner.

2.11. The Knitro-Tuner 89



Artelys Knitro Documentation, Release 11.0.0

Option Meaning
tuner Enable Tuner
tuner_maxtime_cpu Maximum CPU time for Tuner, in seconds
tuner_maxtime_real Maximum real time for Tuner, in seconds
tuner_optionsfile Specify location/name of Tuner options file
tuner_outsub Output additional Tuner subproblem solve information
tuner_terminate Termination condition for Tuner

Note that setting par_numthreads to use multiple threads allows the tuner to be run in parallel.

The following examples show how to load a Tuner options file in various environments.

2.11.5 AMPL example

When using Knitro/AMPL, you can specify the location/name of a Tuner options file through the
tuner_optionsfile option as shown below.

ampl: option knitro_options "tuner=1 tuner_optionsfile='tuner-explore.opt'";

2.11.6 MATLAB example

In Knitro/MATLAB, the only way to enable the Knitro-Tuner and specify the location of a Tuner options file is
through a standard Knitro options file. For example, the following Knitro options file, passed as the last argument to
knitromatlab would enable the Tuner and load the Tuner options file tuner-explore.opt assumed to exist in the
current folder/directory.

# Example Knitro options file used to enable the Tuner
# and load a Tuner options file in Knitro/MATLAB.

tuner 1
tuner_optionsfile tuner-explore.opt

2.11.7 C example

In the callable library interface, a Tuner options file can be loaded through the KN_load_tuner_file() API
function.

/*---- TURN ON THE KNITRO-TUNER */
if (KN_set_int_param (kc, KN_PARAM_TUNER, KN_TUNER_ON) != 0)

exit( -1 );

/*---- LOAD TUNER OPTIONS FILE "tuner-explore.opt". */
if (KN_load_tuner_file (kc, "tuner-explore.opt") != 0)

exit( -1 );

2.11.8 Object-oriented C++ example

In the object-oriented interface, a Tuner options file can be loaded through the KTRSolver::loadTunerFile()
method.

90 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

// Turn on the KNITRO options file.
solver.setParam(KTR_PARAM_TUNER, KTR_TUNER_ON);

// Load tuner options file "tuner-explore.opt".
solver.loadTunerFile("tuner-explore.opt");

2.12 Termination criteria

This section describes the stopping tests used by Knitro to declare (local) optimality, and the corresponding user
options that can be used to enforce more or less stringent tolerances in these tests.

2.12.1 Continuous problems

The first-order conditions for identifying a locally optimal solution are:

∇𝑥ℒ(𝑥, 𝜆) = ∇𝑓(𝑥) +

𝑚−1∑︁
𝑖=0

𝜆𝑐
𝑖∇𝑐𝑖(𝑥) + 𝜆𝑏 = 0 (1)

𝜆𝑐
𝑖 min[(𝑐𝑖(𝑥)− 𝑐𝐿𝑖 ), (𝑐

𝑈
𝑖 − 𝑐𝑖(𝑥))] = 0, 𝑖 = 0, . . . ,𝑚− 1 (2)

𝜆𝑏
𝑗 min[(𝑥𝑗 − 𝑏𝐿𝑗 ), (𝑏

𝑈
𝑗 − 𝑥𝑗)] = 0, 𝑗 = 0, . . . , 𝑛− 1 (2b)

𝑐𝐿𝑖 ≤ 𝑐𝑖(𝑥) ≤ 𝑐𝑈𝑖 , 𝑖 = 0, . . . ,𝑚− 1 (3)

𝑏𝐿𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑈𝑗 , 𝑗 = 0, . . . , 𝑛− 1 (3b)

𝜆𝑐
𝑖 ≥ 0, 𝑖 ∈ ℐ, 𝑐𝐿𝑖 infinite , 𝑐𝑈𝑖 finite (4)

𝜆𝑐
𝑖 ≤ 0, 𝑖 ∈ ℐ, 𝑐𝑈𝑖 infinite , 𝑐𝐿𝑖 finite (4b)

𝜆𝑏
𝑗 ≥ 0, 𝑗 ∈ ℬ, 𝑏𝐿𝑗 infinite , 𝑏𝑈𝑗 finite (5)

𝜆𝑏
𝑗 ≤ 0, 𝑗 ∈ ℬ, 𝑏𝑈𝑗 infinite , 𝑏𝐿𝑗 finite . (5b)

Here ℐ and ℬ represent the sets of indices corresponding to the general inequality constraints and (non-fixed) variable
bound constraints respectively. In the conditions above, 𝜆𝑐

𝑖 is the Lagrange multiplier corresponding to constraint
𝑐𝑖(𝑥), and 𝜆𝑏

𝑗 is the Lagrange multiplier corresponding to the simple bounds on the variable 𝑥𝑗 . There is exactly one
Lagrange multiplier for each constraint and variable. The Lagrange multiplier may be restricted to take on a particular
sign depending on whether the corresponding constraint (or variable) is upper bounded or lower bounded, as indicated
by (4)-(5). If the constraint (or variable) has both a finite lower and upper bound, then the appropriate sign of the
multiplier depends on which bound (if either) is binding (active) at the solution.

In Knitro we define the feasibility error FeasErr at a point 𝑥𝑘 to be the maximum violation of the constraints (3), (3b),
i.e.,

FeasErr = max
𝑖=0,...,𝑚−1,𝑗=0,...,𝑛−1

(0, (𝑐𝐿𝑖 − 𝑐𝑖(𝑥
𝑘)), (𝑐𝑖(𝑥

𝑘)− 𝑐𝑈𝑖 ), (𝑏
𝐿
𝑗 − 𝑥𝑘

𝑗 ), (𝑥
𝑘
𝑗 − 𝑏𝑈𝑗 )),

while the optimality error (OptErr) is defined as the maximum violation of the first three conditions (1)-(2b), with a
small modification to conditions (2) and (2b). In these complementarity conditions, we really only need that either the
multiplier or the corresponding constraint is 0, so we change the terms on the left side of these conditions to:

min(𝜆𝑐
𝑖𝑔

𝑐
𝑖 (𝑥), 𝜆

𝑐
𝑖 , 𝑔

𝑐
𝑖 (𝑥)), 𝑖 = 0, . . . ,𝑚− 1,

min(𝜆𝑏
𝑗𝑔

𝑥
𝑗 (𝑥), 𝜆

𝑏
𝑗 , 𝑔

𝑥
𝑗 (𝑥)), 𝑗 = 0, . . . , 𝑛− 1,

where

𝑔𝑐𝑖 (𝑥) = min[(𝑐𝑖(𝑥)− 𝑐𝐿𝑖 ), (𝑐
𝑈
𝑖 − 𝑐𝑖(𝑥))],

𝑔𝑥𝑗 (𝑥) = min[(𝑥𝑗 − 𝑏𝐿𝑗 ), (𝑏
𝑈
𝑗 − 𝑥𝑗)],

2.12. Termination criteria 91



Artelys Knitro Documentation, Release 11.0.0

to protect against numerical problems that may occur when the Lagrange multipliers become very large. The remaining
conditions on the sign of the multipliers (4)-(5b) are enforced explicitly throughout the optimization.

In order to take into account problem scaling in the termination test, the following scaling factors are defined

𝜏1 = max(1, (𝑐𝐿𝑖 − 𝑐𝑖(𝑥
0)), (𝑐𝑖(𝑥

0)− 𝑐𝑈𝑖 ), (𝑏
𝐿
𝑗 − 𝑥0

𝑗 ), (𝑥
0
𝑗 − 𝑏𝑈𝑗 )),

𝜏2 = max(1, ‖∇𝑓(𝑥𝑘)‖∞)

where 𝑥0 represents the initial point.

For unconstrained problems, the scaling factor 𝜏2 is not effective since ‖∇𝑓(𝑥𝑘)‖∞ → 0 as a solution is approached.
Therefore, for unconstrained problems only, the following scaling is used in the termination test

𝜏2 = max(1,min(|𝑓(𝑥𝑘)|, ‖∇𝑓(𝑥0)‖∞))

in place of 𝜏2.

Knitro stops and declares locally optimal solution found if the following stopping conditions are satisfied:

FeasErr ≤ min(𝜏1 * feastol,feastol_abs) (stop1)
OptErr ≤ min(𝜏2 * opttol,opttol_abs) (stop2)

where feastol, opttol, feastol_abs, and opttol_abs are constants defined by user options.

Note: Please be aware that the min function in (stop1)-(stop2) was a max function in versions of Knitro previous to
Knitro 9.0, and the default values for the user option tolerances were also changed. The changes were made to prevent
cases where Knitro might declare optimality with very large absolute errors (but small relative errors), or incorrectly
declare optimality on unbounded models.

This stopping test is designed to give the user much flexibility in deciding when the solution returned by Knitro
is accurate enough. By default, Knitro uses a scaled stopping test, while also enforcing that some minimum ab-
solute tolerances for feasibility and optimality are satisfied. One can use a purely absolute stopping test by setting
feastol_abs <= feastol and opttol_abs <= opttol.

Scaling

Note that the optimality conditions (stop2) apply to the problem being solved internally by Knitro. If the user option
scale is enabled to perform some scaling of the problem, then the problem objective and constraint functions as well
as the variables may first be scaled before the problem is sent to Knitro for the optimization. In this case, the optimality
conditions apply to the scaled form of the problem. If the accuracy achieved by Knitro with the default settings is not
satisfactory, the user may either decrease the tolerances described above, or try setting scale = no.

Note that scaling the variables or constraints in the problem via the scale user option and scaling/modifying the
stopping tolerances are two different things. You should use scale to try to make the variables/constraints in your
model all have roughly the same magnitude (e.g. close to 1) so that the Knitro algorithms work better. Separately you
should use the Knitro stopping tolerances to specify how much accuracy you require in the solution.

Complementarity constraints

The feasibility error for a complementarity constraint is measured as min(𝑥1, 𝑥2) where 𝑥1 and 𝑥2 are non-negative
variables that are complementary to each other. The tolerances defined by (stop1) are used for determining feasibility
of complementarity constraints.

92 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

Constraint specific feasibility tolerances

By default Knitro applies the same feasibility stopping tolerances feastol / feastol_abs to all constraints.
However, it is possible for you to define an (absolute) feasibility tolerance for each individual constraint in case you
want to customize how feasible the solution needs to be with respect to each individual constraint.

This can be done using the callable library API functions KN_set_con_feastols(),
KN_set_var_feastols(), and KN_set_compcon_feastols(), which allows you to define custom
tolerances for the general constraints, the variable bounds and any complementarity constraints. Please see section
Callable library API reference for more details on these API functions. When using the AMPL modeling language,
the same feature can be used by defining the AMPL input suffixes cfeastol and xfeastol for each constraint or variable
in your model.

2.12.2 Discrete or mixed integer problems

Algorithms for solving optimization problems where one or more of the variables are restricted to take on only discrete
values, proceed by solving a sequence of continuous relaxations, where the discrete variables are relaxed such that
they can take on any continuous value.

The best global solution of these relaxed problems, 𝑓(𝑥𝑅), provides a lower bound on the optimal objective value for
the original problem (upper bound if maximizing). If a feasible point is found for the relaxed problem that satisfies
the discrete restrictions on the variables, then this provides an upper bound on the optimal objective value of the
original problem (lower bound if maximizing). We will refer to these feasible points as incumbent points and denote
the objective value at an incumbent point by 𝑓(𝑥𝐼). Assuming all the continuous subproblems have been solved to
global optimality (if the problem is convex, all local solutions are global solutions), an optimal solution of the original
problem is verified when the lower bound and upper bound are equal.

Knitro declares optimality for a discrete problem when the gap between the best (i.e., largest) lower bound
𝑓*(𝑥𝑅) and the best (i.e., smallest) upper bound 𝑓*(𝑥𝐼) is less than a threshold determined by the user options,
mip_integral_gap_abs and mip_integral_gap_rel. Specifically, Knitro declares optimality when either

𝑓*(𝑥𝐼)− 𝑓*(𝑥𝑅) ≤ mip_integral_gap_abs,

or

𝑓*(𝑥𝐼)− 𝑓*(𝑥𝑅) ≤ mip_integral_gap_rel *max(1, |𝑓*(𝑥𝐼)|),

where mip_integral_gap_abs and mip_integral_gap_rel are typically small positive numbers.

Since these termination conditions assume that the continuous subproblems are solved to global optimality and Knitro
only finds local solutions of nonconvex, continuous optimization problems, they are only reliable when solving convex,
mixed integer problems. The integrality gap 𝑓*(𝑥𝐼)−𝑓*(𝑥𝑅) should be non-negative although it may become slightly
negative from roundoff error, or if the continuous subproblems are not solved to sufficient accuracy. If the integrality
gap becomes largely negative, this may be an indication that the model is nonconvex, in which case Knitro may not
converge to the optimal solution, and will be unable to verify optimality (even if it claims otherwise).

2.13 Obtaining information

In addition to the Knitro log that is printed on screen, information about the computation performed by Knitro is avail-
able in the form of various function calls. This section explains how this information can be retrieved and interpreted.

2.13. Obtaining information 93



Artelys Knitro Documentation, Release 11.0.0

2.13.1 Knitro output for continuous problems

This section describes Knitro outputs at various levels for continuous problems. We examine the output that results
from running examples/C/exampleNLP1.c with full output.

Note: If outlev=0 then all printing of output is suppressed. If outlev is positive, then Knitro prints information
about the solution of your optimization problem either to standard output (outmode = screen), to a file named
knitro.log (outmode = file), or to both (outmode = both). The option outdir controls the directory where
output files are created (if any are) and the option outappend controls whether output is appended to existing files.

Display of Nondefault Options

Knitro first prints the banner displaying the Artelys license type and version of Knitro that is installed. It then lists
all user options which are different from their default values If nothing is listed in this section then it must be that all
user options are set to their default values. Lastly, Knitro prints messages that describe how it resolved user options
that were set to automatic values. For example, if option algorithm = auto, then Knitro prints the algorithm that it
chooses.

=======================================
Commercial License

Artelys Knitro 11.0.0
=======================================

Knitro presolve eliminated 0 variables and 0 constraints.

outlev: 6
Knitro changing algorithm from AUTO to 1.
Knitro changing bar_initpt from AUTO to 3.
Knitro changing bar_murule from AUTO to 4.
Knitro changing bar_penaltycons from AUTO to 1.
Knitro changing bar_penaltyrule from AUTO to 2.
Knitro changing bar_switchrule from AUTO to 2.
Knitro changing linesearch from AUTO to 1.
Knitro changing linsolver from AUTO to 2.

In the example above, it is indicated that we are using a more verbose output level (outlev = 6) instead of the
default value (outlev = 2). Knitro chose algorithm 1 (Interior/Direct), and then automatically determined some
other options related to the algorithm.

Display of problem characteristics

Knitro next prints a summary description of the problem characteristics including the number and type of variables
and constraints and the number of nonzero elements in the Jacobian matrix and Hessian matrix. If the Knitro presolver
is enabled, then information about the presolved form of the problem is printed as well.

Problem Characteristics ( Presolved)
-----------------------
Objective goal: Minimize
Objective type: general
Number of variables: 2 ( 2)

bounded below only: 0 ( 0)
bounded above only: 1 ( 1)
bounded below and above: 0 ( 0)

94 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

fixed: 0 ( 0)
free: 1 ( 1)

Number of constraints: 2 ( 2)
linear equalities: 0 ( 0)
quadratic equalities: 0 ( 0)
gen. nonlinear equalities: 0 ( 0)
linear one-sided inequalities: 0 ( 0)
quadratic one-sided inequalities: 2 ( 2)
gen. nonlinear one-sided inequalities: 0 ( 0)
linear two-sided inequalities: 0 ( 0)
quadratic two-sided inequalities: 0 ( 0)
gen. nonlinear two-sided inequalities: 0 ( 0)

Number of nonzeros in Jacobian: 4 ( 4)
Number of nonzeros in Hessian: 3 ( 3)

Display of Iteration Information

Next, if outlev is greater than 2, Knitro prints columns of data reflecting detailed information about individual
iterations during the solution process. An iteration is defined as a step which generates a new solution estimate (i.e., a
successful step).

If outlev = 2, summary data is printed every 10 iterations, and on the final iteration. If outlev = 3, summary data
is printed every iteration. If outlev = 4, the most verbose iteration information is printed every iteration.

Iter fCount Objective FeasError OptError ||Step|| CGits
-------- -------- -------------- ---------- ---------- ---------- -------

0 7 9.090000e+02 3.000e+00
1 8 7.996681e+02 2.859e+00 2.186e+01 7.226e-02 0
2 9 1.859212e+01 9.066e-01 3.943e+01 2.199e+00 0
3 17 3.280079e+02 8.816e-01 6.903e+00 1.356e+00 8
4 18 1.445972e+01 4.912e-01 6.736e-01 1.173e+00 2
5 19 3.562070e+01 3.874e-01 3.874e-01 1.929e-01 0
6 20 1.153310e+02 2.196e-01 5.652e-01 4.098e-01 0
7 21 2.363651e+02 7.226e-02 7.226e-02 4.156e-01 0
8 22 3.018949e+02 5.268e-03 1.827e-02 1.861e-01 0
9 23 3.064952e+02 6.791e-06 1.513e-04 1.267e-02 0

10 24 3.065000e+02 9.480e-11 9.480e-11 1.358e-05 0

The meaning of each column is described below.

• Iter: iteration number.

• fCount: the cumulative number of (nonlinear) function evalutions. (This information is only printed if outlev
is greater than 3).

• Objective: the value of the objective function at the current iterate.

• FeasError: a measure of the feasibility violation at the current iterate

• OptError: a measure of the violation of the Karush-Kuhn-Tucker (KKT) (first-order) optimality conditions (not
including feasibility) at the current iterate.

• Step: the 2-norm length of the step (i.e., the distance between the new iterate and the previous iterate).

• CGits: the number of Projected Conjugate Gradient (CG) iterations required to compute the step.

2.13. Obtaining information 95



Artelys Knitro Documentation, Release 11.0.0

Display of termination status

At the end of the run a termination message is printed indicating whether or not the optimal solution was found and if
not, why Knitro stopped. The termination message typically starts with the word “EXIT”. If Knitro was successful in
satisfying the termination test, the message will look as follows:

EXIT: Locally optimal solution found.

Display of Final Statistics

Following the termination message, a summary of some final statistics on the run are printed. Both relative and
absolute error values are printed.

Final Statistics
----------------
Final objective value = 3.06499999937285e+02
Final feasibility error (abs / rel) = 9.48e-11 / 3.16e-11
Final optimality error (abs / rel) = 9.48e-11 / 6.50e-12
# of iterations = 10
# of CG iterations = 10
# of function evaluations = 24
# of gradient evaluations = 15
# of Hessian evaluations = 10
Total program time (secs) = 0.00258 ( 0.002 CPU time)
Time spent in evaluations (secs) = 0.00002

Display of solution vector and constraints

If outlev equals 5 or 6, the values of the solution vector are printed after the final statistics. If outlev equals 6,
the final constraint values are also printed, and the values of the Lagrange multipliers (or dual variables) are printed
next to their corresponding constraint or bound.

Constraint Vector Lagrange Multipliers
----------------- ---------------------
c[ 0] = 9.99999999905e-01, lambda[ 0] = -6.99999999925e+02
c[ 1] = 4.49999999927e+00, lambda[ 1] = -8.09211653221e-10

Solution Vector
---------------
x[ 0] = 4.99999999998e-01, lambda[ 2] = 1.75099999969e+03
x[ 1] = 1.99999999982e+00, lambda[ 3] = 0.00000000000e+00

Debugging / profiling information

Knitro can produce additional information which may be useful in debugging or analyzing performance. If outlev
is positive and debug = 1, then multiple files named kdbg_*.log are created which contain detailed information
on performance. If outlev is positive and debug = 2, then Knitro prints information useful for debugging program
execution. The information produced by debug is primarily intended for developers, and should not be used in a
production setting.

96 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

Intermediate iterates

Users can generate a file containing iterates and/or solution points with option newpoint. The output file is called
knitro_newpoint.log.

2.13.2 Knitro output for discrete problems

This section describes Knitro outputs at various levels for discrete or mixed integer problems. We examine the output
that results from running examples/C/callbackMINLP1.c.

Note: When outlev is positive, the options mip_outlevel, mip_debug, mip_outinterval and
mip_outsub control the amount and type of MIP output generated as described below.

Knitro first prints the banner displaying the license type and version of Knitro that is installed. It then lists all user
options which are different from their default values. If nothing is listed in this section then it must be that all user
options are set to their default values. Lastly, Knitro prints messages that describe how it resolved user options that
were set to automatic values. For example, if option mip_branchrule = auto, then Knitro prints the branching rule
that it chooses.

=======================================
Commercial License

Artelys Knitro 11.0.0
=======================================

mip_method: 1
mip_outinterval: 1
Knitro changing mip_rootalg from AUTO to 1.
Knitro changing mip_lpalg from AUTO to 3.
Knitro changing mip_branchrule from AUTO to 2.
Knitro changing mip_selectrule from AUTO to 2.
Knitro changing mip_rounding from AUTO to 3.
Knitro changing mip_heuristic from AUTO to 2.
Knitro changing mip_pseudoinit from AUTO to 1.

In the example above, it is indicated that we are using mip_method = 1 which is the standard branch and bound
method, and that we are printing output information at every node since mip_outinterval = 1. It then determined
seven other options related to the MIP method.

Display of Problem Characteristics

Knitro next prints a summary description of the problem characteristics including the number and type of variables
and constraints and the number of nonzero elements in the Jacobian matrix and Hessian matrix (if providing the exact
Hessian).

If no initial point is provided by the user, Knitro indicates that it is computing one. Knitro also prints the results of any
MIP preprocessing to detect special structure and indicates which MIP method it is using.

Problem Characteristics
-----------------------
Objective goal: Minimize
Objective type: general
Number of variables: 6

bounded below only: 0

2.13. Obtaining information 97



Artelys Knitro Documentation, Release 11.0.0

bounded above only: 0
bounded below and above: 6
fixed: 0
free: 0

Number of binary variables: 3
Number of integer variables: 0
Number of constraints: 6

linear equalities: 0
quadratic equalities: 0
gen. nonlinear equalities: 0
linear one-sided inequalities: 4
quadratic one-sided inequalities: 0
gen. nonlinear one-sided inequalities: 2
linear two-sided inequalities: 0
quadratic two-sided inequalities: 0
gen. nonlinear two-sided inequalities: 0

Number of nonzeros in Jacobian: 16
Number of nonzeros in Hessian: 3

No start point provided -- Knitro computing one.

Knitro detected 1 GUB constraints
Knitro derived 0 knapsack covers after examining 3 constraints
Knitro solving root node relaxation
Knitro searching for integer feasible point using heuristic

* iter = 1: Iinf = 0, FeasError = 2.068e-26, Obj = 1.000e+01
Knitro found integer feasible point in 1 heuristic iteration
Knitro MIP using Branch and Bound method

Display of Node Information

Next, if mip_outlevel = 1, Knitro prints columns of data reflecting detailed information about individual nodes
during the solution process. If mip_outlevel = 2, the accumulated time is printed at each node also. The frequency
of this node information is controlled by the mip_outinterval parameter. For example, if mip_outinterval
= 100, this node information is printed only for every 100th node (printing output less frequently may save significant
CPU time in some cases). In the example below, mip_outinterval = 1, so information about every node is printed
(without the accumulated time).

Node Left Iinf Objective Best Relaxatn Best Incumbent
------ ------ ------ -------------- -------------- --------------

1 0 2 7.592844e-01 7.592844e-01 1.000000e+01
2 1 1 5.171320e+00 7.592844e-01 1.000000e+01

* 2 1 r 7.671320e+00

* 3 2 0 6.009759e+00 f 5.171320e+00 6.009759e+00
4 1 1.000000e+01 pr 5.171320e+00 6.009759e+00
5 0 7.092732e+00 pr 6.009759e+00 6.009759e+00

The meaning of each column is described below.

• Node: the node number. If an integer feasible point was found at a given node, then it is marked with a star (*).

• Left: the current number of active nodes left in the branch and bound tree.

• Iinf: the number of integer infeasible variables at the current node solution.

• Objective: the value of the objective function at the solution of the relaxed subproblem solved at the current
node. If the subproblem was infeasible or failed, this is indicated. Additional symbols may be printed at some

98 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

nodes if the node was pruned (pr), integer feasible (f ), or an integer feasible point was found through rounding
(r).

• Best relaxatn: the value of the current best relaxation (lower bound on the solution if minimizing).

• Best incumbent: the value of the current best integer feasible point (upper bound on the solution if minimizing).

Display of Termination Status

At the end of the run a termination message is printed indicating whether or not the optimal solution was found and if
not, why Knitro stopped. The termination message typically starts with the word “EXIT”. If Knitro was successful in
satisfying the termination test, the message will look as follows:

EXIT: Optimal solution found.

See the reference manual (Return codes) for a list of possible termination messages and a description of their meaning
and the corresponding value returned by KN_solve().

Display of Final Statistics

Following the termination message, a summary of some final statistics on the run are printed.

Final Statistics for MIP
------------------------
Final objective value = 6.00975890892825e+00
Final integrality gap (abs / rel) = 0.00e+00 / 0.00e+00 (0.00%)
# of nodes processed = 5
# of subproblems solved = 8
Total program time (secs) = 0.09930 (0.099 CPU time)
Time spent in evaluations (secs) = 0.00117

Display of Solution Vector and Constraints

If outlev equals 5 or 6, the values of the solution vector are printed after the final statistics. If outlev equals 6,
the constraint values at the solution are also printed.

Solution Vector
---------------
x[0] = 1.30097589089e+00
x[1] = 0.00000000000e+00
x[2] = 1.00000000000e+00
x[3] = 0.00000000000e+00 (binary variable)
x[4] = 1.00000000000e+00 (binary variable)
x[5] = 0.00000000000e+00 (binary variable)

Knitro can produce additional information which may be useful in debugging or analyzing MIP performance. If
outlev is positive and mip_debug = 1, then the file named kdbg_mip.log is created which contains detailed
information on the MIP performance. In addition, if mip_outsub = 1, this file will contain extensive output for each
subproblem solve in the MIP solution process. The information produced by mip_debug is primarily intended for
developers, and should not be used in a production setting.

2.13. Obtaining information 99



Artelys Knitro Documentation, Release 11.0.0

2.13.3 Getting information programmatically in callable library

Important solution information from Knitro can be retrieved through special API function calls.

Information related to the final statistics can be retrieved through the following function calls. The precise meaning of
each function is described in the reference manual (Callable library API reference).

int KNITRO_API KN_get_number_FC_evals (const KN_context_ptr kc,
int * const numFCevals);

int KNITRO_API KN_get_number_GA_evals (const KN_context_ptr kc,
int * const numGAevals);

int KNITRO_API KN_get_number_H_evals (const KN_context_ptr kc,
int * const numHevals);

int KNITRO_API KN_get_number_HV_evals (const KN_context_ptr kc,
int * const numHVevals);

int KNITRO_API KN_get_solution (const KN_context_ptr kc,
int * const status,
double * const obj,
double * const x,
double * const lambda);

int KNITRO_API KN_get_obj_value (const KN_context_ptr kc,
double * const obj);

int KNITRO_API KN_get_con_values (const KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,

double * const c);
int KNITRO_API KN_get_rsd_values (const KN_context_ptr kc,

const KNINT nR,
const KNINT * const indexRsds,

double * const r);

Continuous problems

int KNITRO_API KN_get_number_iters (const KN_context_ptr kc,
int * const numIters);

int KNITRO_API KN_get_number_cg_iters (const KN_context_ptr kc,
int * const numCGiters);

int KNITRO_API KN_get_abs_feas_error (const KN_context_ptr kc,
double * const absFeasError);

int KNITRO_API KN_get_rel_feas_error (const KN_context_ptr kc,
double * const relFeasError);

int KNITRO_API KN_get_abs_opt_error (const KN_context_ptr kc,
double * const absOptError);

int KNITRO_API KN_get_rel_opt_error (const KN_context_ptr kc,
double * const relOptError);

int KNITRO_API KN_get_objgrad_nnz (const KN_context_ptr kc,
KNINT * const nnz);

int KNITRO_API KN_get_objgrad_values (const KN_context_ptr kc,
KNINT * const indexVars,
double * const objGrad);

int KNITRO_API KN_get_objgrad_values_all (const KN_context_ptr kc,
double * const objGrad);

int KNITRO_API KN_get_jacobian_nnz (const KN_context_ptr kc,
KNLONG * const nnz);

int KNITRO_API KN_get_jacobian_values (const KN_context_ptr kc,
KNINT * const indexCons,
KNINT * const indexVars,
double * const jac);

int KNITRO_API KN_get_rsd_jacobian_nnz (const KN_context_ptr kc,

100 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

KNLONG * const nnz);
int KNITRO_API KN_get_rsd_jacobian_values (const KN_context_ptr kc,

KNINT * const indexRsds,
KNINT * const indexVars,
double * const rsdJac);

int KNITRO_API KN_get_hessian_nnz (const KN_context_ptr kc,
KNLONG * const nnz);

int KNITRO_API KN_get_hessian_values (const KN_context_ptr kc,
KNINT * const indexVars1,
KNINT * const indexVars2,
double * const hess);

Discrete or mixed integer problems

int KNITRO_API KN_get_mip_number_nodes (const KN_context_ptr kc,
int * const numNodes);

int KNITRO_API KN_get_mip_number_solves (const KN_context_ptr kc,
int * const numSolves);

int KNITRO_API KN_get_mip_abs_gap (const KN_context_ptr kc,
double * const absGap);

int KNITRO_API KN_get_mip_rel_gap (const KN_context_ptr kc,
double * const relGap);

int KNITRO_API KN_get_mip_incumbent_obj (const KN_context_ptr kc,
double * const incumbentObj);

int KNITRO_API KN_get_mip_relaxation_bnd (const KN_context_ptr kc,
double * const relaxBound);

int KNITRO_API KN_get_mip_lastnode_obj (const KN_context_ptr kc,
double * const lastNodeObj);

int KNITRO_API KN_get_mip_incumbent_x (const KN_context_ptr kc,
double * const x);

2.13.4 Getting information programmatically in the object-oriented interface

Solution information can be retrieved after a call to KTRSolver::solve(). After solve() is called,
KTRSolver::getObj() returns the objective function value, and KTRSolver::getXValues() and
KTRSolver::getLambdaValues() return the final primal and and dual variable values, respectively. The solu-
tion status code is returned by KTRSolver::solve() method.

In addition, information related to the final statistics can be retrieved through the following KTRSolver methods.
The precise meaning of each function is described in the reference manual (Callable library API reference).

int KTRSolver::getNumberFCEvals();
int KTRSolver::getNumberGAEvals();
int KTRSolver::getNumberHEvals();
int KTRSolver::getNumberHVEvals();
std::vector<double> KTRSolver::getConstraintValues();

Continuous problems

int KTRSolver::getNumberIters();
int KTRSolver::getNumberCGIters();
double KTRSolver::getAbsFeasError();
double KTRSolver::getRelFeasError();
double KTRSolver::getAbsOptError();
double KTRSolver::getRelOptError();
std::vector<double> KTRSolver::getObjgradValues();

2.13. Obtaining information 101



Artelys Knitro Documentation, Release 11.0.0

std::vector<double> KTRSolver::getJacobianValues();
std::vector<double> KTRSolver::getHessianValues();

Discrete or mixed integer problems

int KTRSolver::getMipNumNodes();
int KTRSolver::getMipNumSolves();
double KTRSolver::getMipAbsGap();
double KTRSolver::getMipRelGap();
double KTRSolver::getMipIncumbentObj();
std::vector<double> KTRSolver::getMipIncumbentX );
double KTRSolver::getMipRelaxationBnd();
double KTRSolver::getMipLastnodeObj();

2.13.5 User-defined names in Knitro output

By default Knitro uses x for variable names and c for constraint names in the output. However, the user can de-
fine more meaningful and customized names for the objective function, the variables and the constraint functions
through the the API functions KN_set_obj_name(), KN_set_var_names(), KN_set_con_names(), and
KN_set_compcon_names() when using the callable library API.

When using the AMPL modeling language, you can have Knitro output objective function, variable and constraint
names specified in the AMPL model by issuing the following command in the AMPL session:

option knitroampl_auxfiles rc;

2.13.6 Suppressing all output in AMPL

Even when setting the options:

ampl: option solver_msg 0;
ampl: option knitro_options "outlev=0";

in an AMPL session, AMPL will still print some basic information like the solver name and non-default user option
settings to the screen. In order to suppress all AMPL and Knitro output you must change your AMPL solve commands
to something like:

ampl: solve >scratch-file;

where scratch-file is the name of some temporary file where the unwanted output can be sent. Under Unix, “solve
>/dev/null” automatically throws away the unwanted output and under Windows, “solve > NUL” does the same.

2.13.7 AMPL solution information through suffixes

Some Knitro solution information can be retrieved and displayed through AMPL using AMPL suffixes defined for
Knitro (see AMPL suffixes defined for Knitro). In particular, when solving a MIP using Knitro/AMPL, the best relax-
ation bound and the incumbent solution can be displayed using the relaxbnd and incumbent suffixes. For example, if
the objective function is named obj, then:

ampl: display obj.relaxbnd;

give the current relaxation bound and:

102 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

ampl: display obj.incumbent;

will give the current incumbent solution (if one exists).

2.13.8 AMPL presolve

AMPL will often perform a reordering of the variables and constraints defined in the AMPL model. The AMPL
presolver may also simplify the form of the problem by eliminating certain variables or constraints. The output printed
by Knitro corresponds to the reordered, reformulated problem. To view final variable and constraint values in the
original AMPL model, use the AMPL display command after Knitro has completed solving the problem.

It is possible to correlate Knitro variables and constraints with the original AMPL model. You must type an extra
command in the AMPL session:

option knitroampl_auxfiles rc;

and set Knitro option presolve_dbg = 2. Then the solver will print the variables and constraints that Knitro
receives, with their upper and lower bounds, and their AMPL model names. The extra AMPL command causes the
model names to be passed to the Knitro/AMPL solver.

The output below is obtained with the example file testproblem.mod supplied with the distribution. The center
column of variable and constraint names are those used by Knitro, while the names in the right-hand column are from
the AMPL model:

ampl: model testproblem.mod;
ampl: option solver knitroampl;
ampl: option knitroampl_auxfiles rc;
ampl: option knitro_options "presolve_dbg=2 outlev=0";

Knitro 11.0.0: presolve_dbg=2
outlev=0
----- AMPL problem for Knitro -----
Objective name: obj

0.000000e+00 <= x[ 0] <= 1.000000e+20 x[1]
0.000000e+00 <= x[ 1] <= 1.000000e+20 x[2]
0.000000e+00 <= x[ 2] <= 1.000000e+20 x[3]

2.500000e+01 <= c[ 0] <= 1.000000e+20 c2 (general)
5.600000e+01 <= c[ 1] <= 5.600000e+01 c1 (linear)

-----------------------------------
Knitro 11.0.0: Locally optimal or satisfactory solution.
objective 935.9999978; feasibility error 6.74e-08
5 iterations; 7 function evaluations

2.14 Callbacks

Knitro needs to evaluate the objective function and constraints (function values and ideally, their derivatives) at various
points along the optimization process. If these functions are linear or quadratic then Knitro has specialized API routines
for loading their linear and quadratic structures. However, in order to pass this information to Knitro for more general
nonlinear functions, you need to provide a handle to a user-defined function that performs the necessary computation.
This is referred to as a callback.

Callbacks in Knitro require you to supply several function pointers that Knitro calls when it needs new function,
gradient or Hessian values for nonlinear functions (as well as for other specialized user non-evaluation callbacks

2.14. Callbacks 103



Artelys Knitro Documentation, Release 11.0.0

decribed below or in Callable library API reference).

If your callback requires additional parameters beyond what is passed through the arguments, you are encouraged
to create a structure containing them and pass its address as the userParams pointer. Knitro does not modify or
dereference the userParams pointer, so it is safe to use for this purpose.

The C language prototypes for the Knitro callback functions are defined in knitro.h. The prototype used for
evaluation callbacks is:

/** Function prototype for evaluation callbacks. */
typedef int KN_eval_callback (KN_context_ptr kc,

CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,
KN_eval_result_ptr const evalResult,
void * const userParams);

where the structures used to define the arguments evalRequest and evalResult are given by:

/** Structure used to pass back evaluation information for evaluation callbacks.

*
* type: - indicates the type of evaluation requested

* threadID: - the thread ID associated with this evaluation request;

* useful for multi-threaded, concurrent evaluations

* x: - values of unknown (primal) variables used for all evaluations

* lambda: - values of unknown dual variables/Lagrange multipliers

* used for the evaluation of the Hessian

* sigma: - scalar multiplier for the objective component of the Hessian

* vec: - vector array value for Hessian-vector products (only used

* when user option hessopt=KN_HESSOPT_PRODUCT)

*/
typedef struct KN_eval_request {

int type;
int threadID;

const double * x;
const double * lambda;
const double * sigma;
const double * vec;

} KN_eval_request, *KN_eval_request_ptr;

/** Structure used to return results information for evaluation callbacks.

* The arrays (and their indices and sizes) returned in this structure are

* local to the specific callback structure used for the evaluation.

*
* obj: - objective function evaluated at "x" for EVALFC or

* EVALFCGA request (funcCallback)

* c: - (length nC) constraint values evaluated at "x" for

* EVALFC or EVALFCGA request (funcCallback)

* objGrad: - (length nV) objective gradient evaluated at "x" for

* EVALGA request (gradCallback) or EVALFCGA request
→˓(funcCallback)

* jac: - (length nnzJ) constraint Jacobian evaluated at "x" for

* EVALGA request (gradCallback) or EVALFCGA request
→˓(funcCallback)

* hess: - (length nnzH) Hessian evaluated at "x", "lambda", "sigma"

* for EVALH or EVALH_NO_F request (hessCallback)

* hessVec: - (length n=number variables in the model) Hessian-vector

* product evaluated at "x", "lambda", "sigma"

* for EVALHV or EVALHV_NO_F request (hessCallback)

* rsd: - (length nR) residual values evaluated at "x" for EVALR

104 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

* request (rsdCallback)

* rsdJac: - (length nnzJ) residual Jacobian evaluated at "x" for

* EVALRJ request (rsdJacCallback)

*/
typedef struct KN_eval_result {

double * obj;
double * c;
double * objGrad;
double * jac;
double * hess;
double * hessVec;
double * rsd;
double * rsdJac;

} KN_eval_result, *KN_eval_result_ptr;

The callback functions for evaluating the functions, gradients and Hessian are set as described below. Each user
callback routine should return an int value of 0 if successful, or a negative value to indicate that an error occurred
during execution of the user-provided function. See the Derivatives section for details on how to compute the Jacobian
and Hessian matrices in a form suitable for Knitro.

Minimally, and as a first step, you must call KN_add_eval_callback() to establish a callback to evaluate the
nonlinear functions in your model.

/** This is the routine for adding a callback for (nonlinear) evaluations

* of objective and constraint functions. This routine can be called

* multiple times to add more than one callback structure (e.g. to create

* different callback structures to handle different blocks of constraints).

* This routine specifies the minimal information needed for a callback, and

* creates the callback structure "cb", which can then be passed to other

* callback functions to set additional information for that callback.

*
* evalObj - boolean indicating whether or not any part of the objective

* function is evaluated in the callback

* nC - number of constraints evaluated in the callback

* indexCons - (length nC) index of constraints evaluated in the callback

* (set to NULL if nC=0)

* funcCallback - a pointer to a function that evaluates the objective parts

* (if evalObj=KNTRUE) and any constraint parts (specified by

* nC and indexCons) involved in this callback; when

* eval_fcga=KN_EVAL_FCGA_YES, this callback should also evaluate

* the relevant first derivatives/gradients

* cb - (output) the callback structure that gets created by

* calling this function; all the memory for this structure is

* handled by Knitro

*
* After a callback is created by "KN_add_eval_callback()", the user can then specify

* gradient information and structure through "KN_set_cb_grad()" and Hessian

* information and structure through "KN_set_cb_hess()". If not set, Knitro will

* approximate these. However, it is highly recommended to provide a callback
→˓routine

* to specify the gradients if at all possible as this will greatly improve the

* performance of Knitro. Even if a gradient callback is not provided, it is still

* helpful to provide the sparse Jacobian structure through "KN_set_cb_grad()" to

* improve the efficiency of the finite-difference gradient approximations.

* Other optional information can also be set via "KN_set_cb_*() functions as

* detailed below.

*
* Returns 0 if OK, nonzero if error.

2.14. Callbacks 105



Artelys Knitro Documentation, Release 11.0.0

*/
int KNITRO_API KN_add_eval_callback ( KN_context_ptr kc,

const KNBOOL evalObj,
const KNINT nC,
const KNINT * const indexCons, /

→˓* nullable if nC=0 */
KN_eval_callback * const funcCallback,
CB_context_ptr * const cb);

This callback returns a callback structure cb that can then be passed to other callback evaluation routines to specify
particular, optional, properties for that callback. For example, it can be passed to KN_set_cb_grad() to specify a
callback function for gradients (i.e. first derivatives) or KN_set_cb_hess() to specify a callback for the Hessian. If
these are not set, Knitro will approximate derivatives internally. However, we highly recommend providing callbacks
to evaluate derivatives whenever possible as this can dramatically improve the performance of Knitro.

Although the easiest approach is to create one callback structure to use for all evaluations, it is possible to call
KN_add_eval_callback() multiple times to create different cb callback structures for different groups of non-
linear functions. This would allow, for instance, providing exact derivatives for some functions via callbacks, while
having Knitro approximate other derivatives using finite-differencing.

For least-squares problems use KN_add_lsq_eval_callback() and KN_set_cb_rsd_jac(). See Nonlin-
ear Least-Squares for more details.

Other evaluation callback API functions include KN_set_cb_user_params(), KN_set_cb_gradopt(), and
KN_set_cb_relstepsizes(). More may be added in the future. These are described in detail in Callable
library API reference.

Knitro also provides a special callback function for output printing. By default Knitro prints to stdout or a
knitro.log file, as determined by the outmode option. Alternatively, you can define a callback function to
handle all output. This callback function can be set as shown below

int KNITRO_API KN_set_puts_callback (KN_context_ptr kc,
KN_puts * const fnPtr,
void * const userParams);

The prototype for the Knitro callback function used for handling output is

typedef int KN_puts (const char * const str,
void * const userParams);

In addition to the callbacks defined above, Knitro makes additional callbacks available to the user for features such
as multi-start and MINLP, including KN_set_newpt_callback(), KN_set_mip_node_callback(), and
KN_set_ms_initpt_callback().

The prototype used for many of the other non-evaluation user callbacks (e.g. the newpoint callback) is:

/** Type declaration for several non-evaluation user callbacks defined

* below.

*/
typedef int KN_user_callback ( KN_context_ptr kc,

const double * const x,
const double * const lambda,

void * const userParams);

Please see a complete list and description of Knitro callback functions in the Callable library API reference section in
the Reference Manual. In addition, we recommend closely reviewing the examples provided in examples/C which
provide examples of how to use most of these callback functions.

For information on setting callbacks in the object-oriented interface, see the Object-oriented interface reference.

106 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

2.14.1 Example

Consider the following nonlinear optimization problem from the Hock and Schittkowski test set.

min 100− (𝑥2 − 𝑥2
1)

2 + (1− 𝑥1)
2

1 ≤ 𝑥1𝑥2, 0 ≤ 𝑥1 + 𝑥2
2, 𝑥1 ≤ 0.5.

This problem is coded as examples/C/exampleNLP1.c.

Note: The Knitro distribution comes with several C language programs in the directory examples/C. The instructions
in examples/C/README.txt explain how to compile and run the examples. This section overviews the coding
of driver programs using the callback interface, but the working examples provide more complete detail.

Every driver starts by allocating a new Knitro solver instance and checking that it succeeded (KN_new() might return
NULL if the Artelys license check fails):

#include "knitro.h"

/*... Include other headers, define main() ...*/

KN_context *kc;

/*... Declare other local variables ...*/
double xLoBnds[2] = {-KN_INFINITY, -KN_INFINITY};
double xUpBnds[2] = {0.5, KN_INFINITY};
double xInitVals[2] = {-2.0, 1.0};
double cLoBnds[2] = {1.0, 0.0};

error = KN_new(&kc);
if (error) exit(-1);
if (kc == NULL)
{

printf ("Failed to find a valid license.\n");
return( -1 );

}

The next task is to load the problem definition into the solver using various API functions for adding variables and
constraints, bounds, linear and quadratic structures, etc. The code below captures the basic problem definition passed
to Knitro:

/** Initialize Knitro with the problem definition. */

/** Add the variables and set their bounds.

* Note: any unset lower bounds are assumed to be

* unbounded below and any unset upper bounds are

* assumed to be unbounded above. */
n = 2;
error = KN_add_vars(kc, n, NULL);
if (error) exit(-1);
error = KN_set_var_lobnds_all(kc, xLoBnds); /* not necessary since infinite */
if (error) exit(-1);
error = KN_set_var_upbnds_all(kc, xUpBnds);
if (error) exit(-1);
/** Define an initial point. If not set, Knitro will generate one. */
error = KN_set_var_primal_init_values_all(kc, xInitVals);
if (error) exit(-1);

2.14. Callbacks 107



Artelys Knitro Documentation, Release 11.0.0

/** Add the constraints and set their lower bounds */
m = 2;
error = KN_add_cons(kc, m, NULL);
if (error) exit(-1);
error = KN_set_con_lobnds_all(kc, cLoBnds);
if (error) exit(-1);

/** Both constraints are quadratic so we can directly load all the

* structure for these constraints. */

/** First load quadratic structure x0*x1 for the first constraint */
indexVar1 = 0; indexVar2 = 1; coef = 1.0;
error = KN_add_con_quadratic_struct_one (kc, 1, 0,

&indexVar1, &indexVar2, &coef);
if (error) exit(-1);

/** Load structure for the second constraint. below we add the linear

* structure and the quadratic structure separately, though it

* is possible to add both together in one call to

* "KN_add_con_quadratic_struct_one()" since this api function also

* supports adding linear terms. */

/** Add linear term x0 in the second constraint */
indexVar1 = 0; coef = 1.0;
error = KN_add_con_linear_struct_one (kc, 1, 1,

&indexVar1, &coef);
if (error) exit(-1);

/** Add quadratic term x1^2 in the second constraint */
indexVar1 = 1; indexVar2 = 1; coef = 1.0;
KN_add_con_quadratic_struct_one (kc, 1, 1,

&indexVar1, &indexVar2, &coef);

After loading the basic problem information, we add the callbacks for evaluating the nonlinear objective function (and
it’s derivatives) as shown below.

/** Add a callback function "callbackEvalF" to evaluate the nonlinear

* (non-quadratic) objective. Note that the linear and

* quadratic terms in the objective could be loaded separately

* via "KN_add_obj_linear_struct()" / "KN_add_obj_quadratic_struct()".

* However, for simplicity, we evaluate the whole objective

* function through the callback. */
error = KN_add_eval_callback (kc, KNTRUE, 0, NULL, callbackEvalF, &cb);
if (error) exit(-1);

/** Also add a callback function "callbackEvalG" to evaluate the

* objective gradient. If not provided, Knitro will approximate

* the gradient using finite-differencing. However, we recommend

* providing callbacks to evaluate the exact gradients whenever

* possible as this can drastically improve the performance of Knitro.

* We specify the objective gradient in "dense" form for simplicity.

* However for models with many constraints, it is important to specify

* the non-zero sparsity structure of the constraint gradients

* (i.e. Jacobian matrix) for efficiency (this is true even when using

* finite-difference gradients). */
error = KN_set_cb_grad (kc, cb, KN_DENSE, NULL, 0, NULL, NULL, callbackEvalG);
if (error) exit(-1);

108 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

/** Add a callback function "callbackEvalH" to evaluate the Hessian

* (i.e. second derivative matrix) of the objective. If not specified,

* Knitro will approximate the Hessian. However, providing a callback

* for the exact Hessian (as well as the non-zero sparsity structure)

* can greatly improve Knitro performance and is recommended if possible.

* Since the Hessian is symmetric, only the upper triangle is provided.

* Again for simplicity, we specify it in dense (row major) form. */
error = KN_set_cb_hess (kc, cb, KN_DENSE_ROWMAJOR, NULL, NULL, callbackEvalH);
if (error) exit(-1);

These evaluation callback functions use the KN_eval_callback() prototype. In examples/C/exampleNLP1.c
these are named callbackEvalF, callbackEvalG, and callbackEvalH.

/*------------------------------------------------------------------*/
/* FUNCTION callbackEvalF */
/*------------------------------------------------------------------*/
/** The signature of this function matches KN_eval_callback in knitro.h.

* Only "obj" is set in the KN_eval_result structure.

*/
int callbackEvalF (KN_context_ptr kc,

CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,
KN_eval_result_ptr const evalResult,
void * const userParams)

{
const double *x;
double *obj;
double dTmp;

if (evalRequest->type != KN_RC_EVALFC)
{

printf ("*** callbackEvalFC incorrectly called with eval type %d\n",
evalRequest->type);

return( -1 );
}
x = evalRequest->x;
obj = evalResult->obj;

/** Evaluate nonlinear objective */
dTmp = x[1] - x[0]*x[0];

*obj = 100.0 * (dTmp*dTmp) + ((1.0 - x[0])*(1.0 - x[0]));

return( 0 );
}

/*------------------------------------------------------------------*/
/* FUNCTION callbackEvalG */
/*------------------------------------------------------------------*/
/** The signature of this function matches KN_eval_callback in knitro.h.

* Only "objGrad" is set in the KN_eval_result structure.

*/
int callbackEvalG (KN_context_ptr kc,

CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,
KN_eval_result_ptr const evalResult,
void * const userParams)

{

2.14. Callbacks 109



Artelys Knitro Documentation, Release 11.0.0

const double *x;
double *objGrad;
double dTmp;

if (evalRequest->type != KN_RC_EVALGA)
{

printf ("*** callbackEvalGA incorrectly called with eval type %d\n",
evalRequest->type);

return( -1 );
}
x = evalRequest->x;
objGrad = evalResult->objGrad;

/** Evaluate gradient of nonlinear objective */
dTmp = x[1] - x[0]*x[0];
objGrad[0] = (-400.0 * dTmp * x[0]) - (2.0 * (1.0 - x[0]));
objGrad[1] = 200.0 * dTmp;

return( 0 );
}

/*------------------------------------------------------------------*/
/* FUNCTION callbackEvalH */
/*------------------------------------------------------------------*/
/** The signature of this function matches KN_eval_callback in knitro.h.

* Only "hess" and "hessVec" are set in the KN_eval_result structure.

*/
int callbackEvalH (KN_context_ptr kc,

CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,
KN_eval_result_ptr const evalResult,
void * const userParams)

{
const double *x;
double sigma;
double *hess;

if ( evalRequest->type != KN_RC_EVALH
&& evalRequest->type != KN_RC_EVALH_NO_F)

{
printf ("*** callbackEvalHess incorrectly called with eval type %d\n",

evalRequest->type);
return( -1 );

}

x = evalRequest->x;
/** Scale objective component of hessian by sigma */
sigma = *(evalRequest->sigma);
hess = evalResult->hess;

/** Evaluate the hessian of the nonlinear objective.

* Note: Since the Hessian is symmetric, we only provide the

* nonzero elements in the upper triangle (plus diagonal).

* These are provided in row major ordering as specified

* by the setting KN_DENSE_ROWMAJOR in "KN_set_cb_hess()".

* Note: The Hessian terms for the quadratic constraints

* will be added internally by Knitro to form

* the full Hessian of the Lagrangian. */

110 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

hess[0] = sigma * ( (-400.0 * x[1]) + (1200.0 * x[0]*x[0]) + 2.0); // (0,0)
hess[1] = sigma * (-400.0 * x[0]); // (0,1)
hess[2] = sigma * 200.0; // (1,1)

return( 0 );
}

Back in the main program KN_solve() is invoked to find the solution:

/** Solve the problem.

*
* Return status codes are defined in "knitro.h" and described

* in the Knitro manual.

*/
nStatus = KN_solve (kc);

/** Delete the Knitro solver instance. */
KN_free (&kc);

2.15 Other programmatic interfaces

This chapter discusses interfaces to C++, C#, Java, Fortran and Python offered by the Knitro callable library.

2.15.1 Knitro in a C++ application

Note: C++ driver-based interface has been superseded by C++ object-oriented interface, see Object-oriented interface
reference. The C++ driver and examples are not available anymore since Knitro 10.0.

Calling Knitro from a C++ application follows the same outline as a C application. The distribution provides a C++
general test harness in the directory examples/C++. In the example, optimization problems are coded as subclasses
of an abstract interface and compiled as separate shared objects. A main driver program dynamically loads a problem
and sets up callback mode so Knitro can invoke the particular problem’s evaluation methods. The main driver can also
use Knitro to conveniently check partial derivatives against finite-difference approximations. It is easy to add more
test problems to the test environment.

2.15.2 Knitro in a C# application

Calling Knitro from a C# application is similar to using the object-oriented interface in C++. The primary difference
between the C++ and C# version of the object-oriented interface is in the syntax and function name capitalization. The
C# function names are capitalized, and the functions use IList<> (implemented as List<>) for function arguments
and return values.

The C# object-oriented interface requires .NET Version 4.0 and up. The interface uses P/Invoke to call the C
Knitro callable library and convert data and function signatures between C# and C, and uses knitro.h and the
knitro.dll dynamic library.

Examples of problem definitions and Knitro callbacks in C# can be found in the example folders distributed with
Knitro, and the source code for the interface is provided for informational purposes.

2.15. Other programmatic interfaces 111



Artelys Knitro Documentation, Release 11.0.0

2.15.3 Knitro in a Java application

Calling Knitro from a Java application is similar to using the object-oriented interface in C++. The primary difference
between the C++ and Java version of the object-oriented interface is in the syntax. The Java function names are
capitalized, and the functions use List<> (implemented as ArrayList<>) for function arguments and return values.

The Java object-oriented interface requires Java 1.6 and up. The interface uses JNA (Java Native Access) to call the
C Knitro callable library and convert data and function signatures between Java and C, and uses knitro.h and the
knitro.dll dynamic library (libknitro.so on Linux; libknitro.dylib on Mac OS X).

Examples of problem definitions and Knitro callbacks in Java can be found in the example folders distributed with
Knitro, and the source code for the interface is provided for informational purposes.

2.15.4 Knitro in a Fortran application

Calling Knitro from a Fortran application follows the same outline as a C application. The optimization problem must
be defined in terms of arrays and constants that follow the old pre-Knitro 11.0 API, and then the Fortran version of
KTR_init_problem() is called. Fortran integer and double precision types map directly to C int and double types.

Fortran applications require wrapper functions written in C to (1) isolate the KTR_context structure, which has no
analog in unstructured Fortran, (2) convert C function names into names recognized by the Fortran linker, and (3)
renumber array indices to start from zero (the C convention used by Knitro) for applications that follow the Fortran
convention of starting from one. The wrapper functions can be called from Fortran with exactly the same arguments
as their C language counterparts, except for the omission of the KTR_context argument.

An example Fortran program and set of C wrappers is provided in examples/Fortran. The example loads the
matrix sparsity of the optimization problem with indices that start numbering from zero, and therefore requires no
conversion from the Fortran convention of numbering from one. The C wrappers provided are sufficient for the simple
example, but do not implement all the functionality of the Knitro callable library. Users are free to write their own C
wrapper routines, or extend the example wrappers as needed.

2.15.5 Knitro in a Python application

Knitro provides a Python interface for the Knitro callable library functions defined in knitro.h. The Python API
loads directly knitro.dll (libknitro.so on Unix; libknitro.dylib on Mac OS X). In this way Python
applications can create a Knitro solver instance and call Python methods that execute Knitro functions. The Python
form of Knitro is thread-safe, which means that a Python application can create multiple instances of a Knitro solver
in different threads, each instance solving a different problem. This feature might be important in an application that is
deployed on a web server. However, please note that Python interpreters are usually not thread safe so callbacks cannot
be evaluated in parallel. Thus par_concurrent_evals is always initialized to 0/’no’ in the Python interface, but
may still be set to 1/’yes’ by the user.

Calling Knitro from a Python application follows the same outline as a C application, with the same methods. C int
and double types are automatically mapped into their Python counterparts (int and float). C arrays are automatically
mapped into Python list types. C pointers are automatically mapped into single element lists (used in particular for
recovering objective function values). Methods that accept NULL values in C also accept None values in Python.

Knitro accepts empty Python lists for C pointer arguments that are used as output. In this case, the output value will
automatically be appended to the list provided. None can also be provided if the output value is not requested.

The optimization problem must be defined in terms of Python lists and constants that follows the pre-Knitro 11.0 C
API, and the Python version of KTR_init_problem() / KTR_mip_init_problem() is then called. Having
defined the optimization problem, the Python version of KTR_solve() or KTR_mip_solve() is called in callback
mode or in reverse communications mode. All Python methods have the same function prototype as in C, with the
exception of KTR_init_problem() / KTR_mip_init_problem(), which do not require arguments m, nnzJ,
nnzH. These arguments are automatically inferred from the lengths of the other list arguments.

112 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

To write a Python application, take a look at the sample programs in examples/Python. The call sequence for
using Knitro is almost exactly the same as C applications that call knitro.h functions with a KTR_context_ptr
object.

Python functions can be declared as callbacks for Knitro as long as they follow the corresponding callback function
prototypes (defined in knitro.h). The arguments passed by Knitro to these callbacks functions are mapped as
follows. C int and double types are automatically mapped into their Python counterparts (int and float). C arrays
and pointers are automatically mapped into Python lists. Although the Python language makes it unnecessary, Python
objects may be passed to the callback function through the userParams argument.

The sample programs can be run directly from the command line after installing knitro.py (or making sure that
knitro.py is in the folder containing the example source file). The sample programs provided closely mirror the
structural form of the C callback and reverse communication examples.

The Knitro Python API supports Python versions 2.7 and 3.6.

2.16 Special problem classes

The following sections describe specializations in Knitro to deal with particular classes of optimization problems. We
also provide guidance on how to best set user options and model your problem to get the best performance out of
Knitro for particular types of problems.

2.16.1 Linear programming problems (LPs)

A linear program (LP) is an optimization problem where the objective function and all the constraint functions are
linear.

Knitro has built in specializations for efficiently solving LPs. Knitro will automatically detect LPs and apply these
specializations, provided the linear structure for the model is added using the API functions for adding linear structure
(and not more general callbacks). See Callable library API reference for more detail on API functions for adding
linear structure.

2.16.2 Quadratic programming problems (QPs)

A quadratic program (QP) is an optimization problem where the objective function is quadratic and all the constraint
functions are linear.

Knitro has built in specializations for efficiently solving QPs. Knitro will automatically detect QPs and apply these
specializations, provided the linear and quadratic structure for the model is added using the API functions for adding
linear and quadratic structure (and not more general callbacks). See Callable library API reference for more detail on
API functions for adding linear and quadratic structure.

Typically, these specializations will only help on convex QPs.

2.16.3 Systems of nonlinear equations

Knitro is effective at solving systems of nonlinear equations.

There are two ways to try to solve a square system of nonlinear equations using Knitro. In the first way, you can use
the least-squares API (see Nonlinear Least-Squares) and just specify the nonlinear equations as the residual functions.
Knitro will then formulate your model as an unconstrained optimization problem where the objective function to be
minimized is the sum of squares of the nonlinear equations and apply the Gauss-Newton Hessian.

2.16. Special problem classes 113



Artelys Knitro Documentation, Release 11.0.0

In the second way, you can use the standard Knitro API and specify the nonlinear equations as equality constraints and
specify the objective function as zero (i.e., f(x)=0).

The first approach is the recommended approach, however, you should experiment with both formulations to see which
one works better.

If Knitro is converging to a stationary point for which the nonlinear equations are not satisfied, the multi-start option
may help in finding a solution by trying different starting points.

2.16.4 Least squares problems

Knitro offers a specialized API for solving least-squares problems,

min 𝑓(𝑥) = 0.5 * (𝑟1(𝑥)2 + 𝑟2(𝑥)
2 + ...+ 𝑟𝑞(𝑥)

2)

with or without bounds on the variables (see Nonlinear Least-Squares). By default, this specialized interface will
apply the Gauss-Newton Hessian

𝐽(𝑥)𝑇 𝐽(𝑥)

where 𝐽(𝑥) is the Jacobian matrix of the residual functions 𝑟𝑗(𝑥) at 𝑥. Knitro will behave like a Gauss-Newton
method by using the linesearch methods algorithm = KN_ALG_BAR_DIRECT or KN_ALG_ACT_SQP, and will
be very similar to the classical Levenberg-Marquardt method when using the trust-region methods algorithm =
KN_ALG_BAR_CG or KN_ALG_ACT_CG. The Gauss-Newton and Levenberg-Marquardt approaches consist of using
this approximate value for the Hessian and ignoring the remaining term. Using the specialized least-squares interface
will generally be the most effective way to solve least-squares models with Knitro, as it only requires first derivatives
of the residual functions, 𝑟𝑗(𝑥), and yet can converge rapidly in most cases.

However, in some cases, if the value of the objective function at the solution is not close to zero (the large residual
case), and/or the user can provide the full, exact Hessian matrix, then it may be more efficient to use the standard API
and solve the least-squares model as any other optimization problem. Any of the Knitro options can be used.

See Nonlinear Least Squares for an implementation in knitromatlab.

2.16.5 Complementarity constraints (MPCCs)

As we have seen in Complementarity constraints, a mathematical program with complementarity (or equilibrium)
constraints (also know as an MPCC or MPEC) is an optimization problem which contains a particular type of con-
straint referred to as a complementarity constraint. A complementarity constraint is a constraint that enforces that two
variables 𝑥1 and 𝑥2 are complementary to each other, i.e. that the following conditions hold:

𝑥1𝑥2 = 0, 𝑥1 ≥ 0, 𝑥2 ≥ 0.

These constraints sometimes occur in practice and deserve special handling. See Complementarity constraints for
details on how to use complementarity constraints with Knitro.

2.16.6 Global optimization

Knitro is designed for finding locally optimal solutions of continuous optimization problems. A local solution is a
feasible point at which the objective function value at that point is as good or better than at any “nearby” feasible
point. A globally optimal solution is one which gives the best (i.e., lowest if minimizing) value of the objective
function out of all feasible points. If the problem is convex all locally optimal solutions are also globally optimal
solutions. The ability to guarantee convergence to the global solution on large-scale nonconvex problems is a nearly
impossible task on most problems unless the problem has some special structure or the person modeling the problem

114 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

has some special knowledge about the geometry of the problem. Even finding local solutions to large-scale, nonlinear,
nonconvex problems is quite challenging.

Although Knitro is unable to guarantee convergence to global solutions it does provide a multi-start heuristic that
attempts to find multiple local solutions in the hopes of locating the global solution. See Multistart.

2.16.7 Mixed integer programming (MIP)

Knitro provides tools for solving optimization models (both linear and nonlinear) with binary or integer variables. See
the dedicated chapter Mixed-integer nonlinear programming for a discussion on this topic.

2.17 Tips and tricks

This last chapter contains some rules of the thumb to improve efficiency, solve memory issues and other frequent
problems.

2.17.1 Automatic Differentiation (AD)

Why is Automatic Differentiation important?

Nonlinear optimization software relies on accurate and efficient derivative computations for faster solutions and im-
proved robustness.

Knitro in particular has the ability to utilize second derivative (Hessian matrix) information for faster convergence.
Computing partial derivatives and coding them manually in a programming language can be time consuming and error
prone (Knitro does provide a function to check first derivatives against finite differences).

Automatic Differentiation (AD) is a modern technique which automatically and efficiently computes the exact deriva-
tives so that the user is freed from dealing with this issue.

Most modeling languages provide automatic differentiation.

2.17.2 Option tuning for efficiency

• If you are unsure how to set non-default options, or which user options to play with, simply running your model
with the setting tuner =1 will cause the Knitro-Tuner to run many instances of your model with a variety
of option settings, and report some statistics and recommendations on what non-default option settings may
improve performance on your model. Often significant performance improvements may be made by choosing
non-default option settings. See The Knitro-Tuner for more details.

• The most important user option is the choice of which continuous nonlinear optimization algorithm to use,
which is specified by the algorithm option. Please try all four options as it is often difficult to predict which
one will work best, or try using the multi option (algorithm=5). In particular the Active Set algorithms may
often work best for small problems, problems whose only constraints are simple bounds on the variables, or
linear programs. The interior-point algorithms are generally preferable for large-scale problems.

• Perhaps the second most important user option setting is the hessopt user option that specifies which Hessian
(or Hessian approximation) technique to use. If you (or the modeling language) are not providing the exact
Hessian to Knitro, then you should experiment with different values here.

• One of the most important user options for the interior-point algorithms is the bar_murule option, which
controls the handling of the barrier parameter. It is recommended to experiment with different values for this
user option if you are using one of the interior-point solvers in Knitro.

2.17. Tips and tricks 115



Artelys Knitro Documentation, Release 11.0.0

• If you are using the Interior/Direct algorithm and it seems to be taking a large number of conjugate gradient
(CG) steps (as evidenced by a non-zero value under the CGits output column header on many iterations), then
you should try a small value for the bar_directinterval user option (e.g., 0-2). This option will try to
prevent Knitro from taking an excessive number of CG steps. Additionally, if there are solver iterations where
Knitro slows down because it is taking a very large number of CG iterations, you can try enforcing a maximum
limit on the number of CG iterations per algorithm iteration using the cg_maxit user option.

• The linsolver option can make a big difference in performance for some problems. For small problems
(particularly small problems with dense Jacobian and Hessian matrices), it is recommended to try the qr setting,
while for large problems, it is recommended to try the hybrid, ma27, ma57 and mklpardiso settings to see which
is fastest. When using either the hybrid, qr, ma57, or mklpardiso setting for the linsolver option it is highly
recommended to use the Intel MKL BLAS (blasoption = 1) provided with Knitro or some other optimized
BLAS as this can result in significant speedups compared to the internal Knitro BLAS (blasoption = 0).

• When solving mixed integer problems (MIPs), if Knitro is struggling to find an integer feasible point, then you
should try different values for the mip_heuristic option, which will try to find an integer feasible point
before beginning the branch and bound process. Other important MIP options that can significantly impact the
performance of Knitro are the mip_method, mip_branchrule, and mip_selectrule user options, as
well as the mip_nodealg option which will determine the Knitro algorithm to use to solve the nonlinear,
continuous subproblems generated during the branch and bound process.

2.17.3 Setting bounds efficiently

Why is Knitro not honoring my bound constraints?

By default Knitro does not enforce that simple bounds on the variables (𝑥) are satisfied throughout the optimization
process. Rather, satisfaction of these bounds is only enforced at the solution.

In some applications, however, the user may want to enforce that the initial point and all intermediate iterates satisfy
the bounds 𝑏𝐿 ≤ 𝑥 ≤ 𝑏𝑈 . This can be enforced by setting KN_PARAM_HONORBNDS to 1.

Please note, the honor bounds option pertains only to the simple bounds defined with vectors 𝑏𝑈 and 𝑏𝐿 for 𝑥, not to
the general equality and inequality constraints defined with the vectors 𝑐𝑈 , 𝑐𝐿, and 𝑐.

Do I need to specify a constraint with 𝑐𝑈 , 𝑐𝐿, and 𝑐 if I already specified it with the bounds parameters
𝑏𝑈 and 𝑏𝐿 ?

No, if you have specified a constraint with the bounds parameters then you should not specify it with the general
constraints.

For example, 𝑥0 ≤ 2 is best modeled by setting 𝑏𝐿0 = − KN_INFINITY and 𝑏𝑈0 = 2.

Duplicate specification of a constraint can make the problem more difficult to solve.

Do I need to initialize all of the bounds parameters? What if a variable is unbounded?

You only need to initialize finite bounds in your model using the API functions KN_set_var_lobnds(),
KN_set_var_upbnds(), and KN_set_var_fxbnds(). Any variable bounds that are not explicitly set are
infinite (i.e. unbounded).

You can also explicitly mark infinite bounds using the API functions above by using Knitro’s value for infinity,
KN_INFINITY to denote unbounded.

Note that any finite variable bound larger than bndrange() in magnitude will be treated as infinite by Knitro. To
treat it as a real finite bound, you must either increase the value of bndrange() to be larger than the largest finite
bound, or rescale the problem to make the finite bounds smaller in magnitude.

116 Chapter 2. User guide



Artelys Knitro Documentation, Release 11.0.0

See include/knitro.h for the definition of KN_INFINITY.

Do I need to initialize all of the constraint parameters 𝑐𝑈 and 𝑐𝐿? What if a constraint is unbounded?

You only need to initialize finite bounds in your model using the API functions KN_set_con_lobnds(),
KN_set_con_upbnds(), and KN_set_con_eqbnds(). Any constraint bounds that are not explicitly set are
infinite (i.e. unbounded).

You can also explicitly mark infinite bounds using the API functions above by using Knitro’s value for infinity,
KN_INFINITY to denote unbounded.

Note that any finite constraint bound larger than bndrange() in magnitude will be treated as infinite by Knitro. To
treat it as a real finite bound, you must either increase the value of bndrange() to be larger than the largest finite
bound, or rescale the problem to make the finite bounds smaller in magnitude.

See include/knitro.h for the definition of KN_INFINITY.

2.17.4 Memory issues

If you receive a Knitro termination message indicating that there was not enough memory on your computer to solve
the problem, or if your problem appears to be running very slow because it is using nearly all of the available memory
on your computer system, the following are some recommendations to try to reduce the amount of memory used by
Knitro.

• Experiment with different algorithms. Typically the Interior/Direct algorithm is chosen by default and uses the
most memory. The Interior/CG and Active Set algorithms usually use much less memory. In particular if the
Hessian matrix is large and dense and using most of the memory, then the Interior/CG method may offer big
savings in memory. If the constraint Jacobian matrix is large and dense and using most of the memory, then the
Active Set algorithm may use much less memory on your problem.

• If much of the memory usage seems to come from the Hessian matrix, then you should try different Hessian
options via the hessopt user option. In particular hessopt settings product_findiff, product, and lbfgs use
the least amount of memory.

• Try different linear solver options in Knitro via the linsolver user option. Sometimes even if your prob-
lem definition (e.g. Hessian and Jacobian matrix) can be easily stored in memory, the sparse linear system
solvers inside Knitro may require a lot of extra memory to perform and store matrix factorizations. If your
problem size is relatively small you can try linsolver setting qr. For large problems you should try both
ma27 and ma57 settings as one or the other may use significantly less memory. In addition, using a smaller
linsolver_pivottol user option value may reduce the amount of memory needed for the linear solver.

2.17.5 Reproducibility issues across platform/computer

If you notice different results accross platforms/computers for the exact same Knitro run (same model, same initial
conditions, same options), it is probably due to one of the following reasons:

• Knitro library is built with different compilers on different OS which can cause small numerical differences that
propagate.

• The Intel MKL library has specializations to optimize performance for particular hardware/CPUs/environments
which can also cause numerical differences.

To avoid the second issue you may set blasoption = 0.

2.17. Tips and tricks 117



Artelys Knitro Documentation, Release 11.0.0

2.18 Bibliography

For a detailed description of the algorithm implemented in Interior/CG see Byrd et al., 1999 1 and for the global
convergence theory see Byrd et al., 2000 2. The method implemented in Interior/Direct is described in Waltz et al.,
2006 3. The Active Set algorithm is described in Byrd et al., 2004 4 and the global convergence theory for this algorithm
is in Byrd et al., 2006a 5. A summary of the algorithms and techniques implemented in the Knitro software product is
given in Byrd et al., 2006b 6.

The implementation of the CG preconditioner makes use of the icfs software, which is described in details in Lin and
Moré, 1999 13.

For mixed-integer nonlinear optimization, the hybrid Quesada-Grossman (HQG) method in Knitro is based on the
algorithm described in 7. The MISQP algorithm in Knitro is Artelys’ own implementation of the MISQP algorithm
described in 8 but differs in some details.

We also recommend the following papers: Byrd et al., 2003 9, Fourer et al., 2003 10, Hock and Schittkowski, 1981 11,
and Nocedal and Wright, 1999 12.

To solve linear systems arising at every iteration of the algorithm, Knitro may utilize routines MA27 or MA57 14,
a component package of the Harwell Subroutine Library (HSL). HSL, a collection of Fortran codes for large-scale
scientific computation. See http://www.hsl.rl.ac.uk/

In addition, the Active Set algorithm in Knitro may make use of the COIN-OR Clp linear programming solver module.
The version used in Knitro may be downloaded from http://www.artelys.com/tools/clp/

1 R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for large scale nonlinear programming”, SIAM Journal on Optimization,
9(4):877–900, 1999.

2 R. H. Byrd, J.-Ch. Gilbert, and J. Nocedal, “A trust region method based on interior point techniques for nonlinear programming”, Mathemat-
ical Programming, 89(1):149–185, 2000.

3 R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, “An interior algorithm for nonlinear optimization that combines line search and
trust region steps”, Mathematical Programming A, 107(3):391–408, 2006.

4 R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz, “An algorithm for nonlinear optimization using linear programming and
equality constrained subproblems”, Mathematical Programming, Series B, 100(1):27–48, 2004.

5 R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz, “On the convergence of successive linear-quadratic programming algorithms”,
SIAM Journal on Optimization, 16(2):471–489, 2006.

6 R. H. Byrd, J. Nocedal, and R.A. Waltz, “KNITRO: An integrated package for nonlinear optimization”, In G. di Pillo and M. Roma, editors,
Large-Scale Nonlinear Optimization, pages 35–59. Springer, 2006.

13 C.-J. Lin and J. J. Moré, “Incomplete Cholesky factorizations with limited memory”, SIAM J. Sci. Comput., 21(1):24–45, 1999.

7 I. Quesada, and I. E. Grossmann, “An LP/NLP based branch and bound algorithm for convex MINLP optimization problems”, Comput-
ers and Chemical Engineering, 16(10-11):937–947, 1992.

8 O. Exler, and K. Schittkowski, “A trust-region SQP algorithm for mixed-integer nonlinear programming”, Optimization Letters, Vol.
1:269–280, 2007.

9 R. H. Byrd, J. Nocedal, and R. A. Waltz, “Feasible interior methods using slacks for nonlinear optimization”, Computational Optimization
and Applications, 26(1):35–61, 2003.

10 R. Fourer, D. M. Gay, and B. W. Kernighan, “AMPL: A Modeling Language for Mathematical Programming”, 2nd Ed., Brooks/Cole –
Thomson Learning, 2003.

11 Hock, W. and Schittkowski, K. “Test Examples for Nonlinear Programming Codes”, volume 187 of Lecture Notes in Economics and
Mathematical Systems, Springer-Verlag, 1981.

12 J. Nocedal and S. J. Wright, “Numerical Optimization”, Springer Series in Operations Research, Springer, 1999.

14 Harwell Subroutine Library, “A catalogue of subroutines (HSL 2002)”, AEA Technology, Harwell, Oxfordshire, England, 2002.

118 Chapter 2. User guide

http://www.hsl.rl.ac.uk/
http://www.artelys.com/tools/clp/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.4793&rep=rep1&type=pdf
https://hal.inria.fr/inria-00073794/document
http://users.iems.northwestern.edu/~nocedal/PDFfiles/integrated.pdf


Artelys Knitro Documentation, Release 11.0.0

Lastly, Knitro may make use of the Intel(R) Math Kernel Library (https://software.intel.com/en-us/intel-mkl) for some
linear algebra computations.

2.18. Bibliography 119

https://software.intel.com/en-us/intel-mkl


Artelys Knitro Documentation, Release 11.0.0

120 Chapter 2. User guide



CHAPTER

THREE

REFERENCE MANUAL

The reference manual describes in details the different available interfaces, the callable library API (including the
return codes), the Knitro user options and the output files that can be generated by Knitro.

3.1 Knitro / AMPL reference

A complete list of available Knitro options can always be shown by typing:

knitroampl -=

in a terminal, which produces the following output.

act_lpalg LP algorithm used in Active or SQP subproblems
act_lpdumpmps Dump LPs to MPS files in Active or SQP algorithm
act_lpfeastol Feasibility tolerance for LP subproblems
act_lppenalty Controls constraint penalization in LP subproblems
act_lppresolve Controls LP presolve in Active or SQP subproblems
act_lpsolver LP solver used by Active or SQP algorithm
act_parametric Use parametric LP in Active or SQP algorithm
act_qpalg QP subproblem alg used by Active or SQP algorithm
alg Algorithm (0=auto, 1=direct, 2=cg, 3=active, 4=sqp, 5=multi)
algorithm Synonym for alg
bar_conic_enable Special handling of conic constraints
bar_directinterval Frequency for trying to force direct steps
bar_feasible Emphasize feasibility
bar_feasmodetol Tolerance for entering stay feasible mode
bar_initmu Initial value for barrier parameter
bar_initpi_mpec Initial value for barrier MPEC penalty parameter
bar_initpt Barrier initial point strategy for slacks/multipliers
bar_maxcrossit Maximum number of crossover iterations
bar_maxrefactor Maximum number of KKT refactorizations allowed
bar_murule Rule for updating the barrier parameter
bar_penaltycons Apply penalty method to constraints
bar_penaltyrule Rule for updating the penalty parameter
bar_refinement Whether to refine barrier solution
bar_relaxcons Whether to relax constraints
bar_slackboundpush Amount by which slacks are pushed inside bounds
bar_switchobj Objective for barrier switching alg
bar_switchrule Rule for barrier switching alg
bar_watchdog Enable watchdog heuristic for barrier algs?
blasoption Which BLAS/LAPACK library to use
blasoptionlib Name of dynamic BLAS/LAPACK library
bndrange Constraint/variable bound range

121



Artelys Knitro Documentation, Release 11.0.0

cg_maxit Maximum number of conjugate gradient iterations
cg_pmem Memory for incomplete Cholesky
cg_precond Preconditioning method
cg_stoptol Stopping tolerance for CG subproblems
convex Declare the problem as convex
cplexlibname Name of dynamic CPLEX library
debug Debugging level (0=none, 1=problem, 2=execution)
delta Initial trust region radius
derivcheck Whether to use derivative checker
derivcheck_terminate Derivative checker type (1=error, 2=always)
derivcheck_tol Relative tolerance for derivative checker
derivcheck_type Derivative checker type (1=forward, 2=central)
feastol Feasibility stopping tolerance
feastol_abs Absolute feasibility tolerance
feastolabs Absolute feasibility tolerance
fstopval Stop based on obj. function value
ftol Stop based on small change in obj. function
ftol_iters Stop based on small change in obj. function
gradopt Gradient computation method
hessopt Hessian computation method
honorbnds Enforce satisfaction of the bounds
infeastol Infeasibility stopping tolerance
initpenalty Initial merit function penalty value
linesearch Which linesearch method to use
linesearch_maxtrials Maximum number of linesearch trial points
linsolver Which linear solver to use
linsolver_ooc Use out-of-core option?
linsolver_pivottol Initial pivot tolerance
lmsize Number of limited-memory pairs stored for LBFGS
lpsolver LP solver used by Active Set algorithm
ma_maxtime_cpu Maximum CPU time when 'alg=multi', in seconds
ma_maxtime_real Maximum real time when 'alg=multi', in seconds
ma_outsub Enable subproblem output when 'alg=multi'
ma_terminate Termination condition when option 'alg=multi'
maxfevals Maximum number of function evaluations
maxit Maximum number of iterations
maxtime_cpu Maximum CPU time in seconds, per start point
maxtime_real Maximum real time in seconds, per start point
mip_branchrule MIP branching rule
mip_debug MIP debugging level (0=none, 1=all)
mip_gub_branch Branch on GUBs (0=no, 1=yes)
mip_heuristic MIP heuristic search
mip_heuristic_maxit MIP heuristic iteration limit
mip_heuristic_terminate MIP heuristic termination
mip_implications Add logical implications (0=no, 1=yes)
mip_integer_tol Threshold for deciding integrality
mip_integral_gap_abs Absolute integrality gap stop tolerance
mip_integral_gap_rel Relative integrality gap stop tolerance
mip_intvar_strategy Treatment of integer variables
mip_knapsack Add knapsack cuts (0=no, 1=ineqs, 2=ineqs+eqs)
mip_lpalg LP subproblem algorithm
mip_maxnodes Maximum nodes explored
mip_maxsolves Maximum subproblem solves
mip_maxtime_cpu Maximum CPU time in seconds for MIP
mip_maxtime_real Maximum real in seconds time for MIP
mip_method MIP method (0=auto, 1=BB, 2=HQG, 3=MISQP)
mip_nodealg Standard node relaxation algorithm
mip_outinterval MIP output interval

122 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

mip_outlevel MIP output level
mip_outsub Enable MIP subproblem output
mip_pseudoinit Pseudo-cost initialization
mip_relaxable Are integer variables relaxable?
mip_rootalg Root node relaxation algorithm
mip_rounding MIP rounding rule
mip_selectdir MIP node selection direction
mip_selectrule MIP node selection rule
mip_strong_candlim Strong branching candidate limit
mip_strong_level Strong branching tree level limit
mip_strong_maxit Strong branching iteration limit
mip_terminate Termination condition for MIP
ms_deterministic Use deterministic multistart
ms_enable Enable multistart
ms_maxbndrange Maximum unbounded variable range for multistart
ms_maxsolves Maximum Knitro solves for multistart
ms_maxtime_cpu Maximum CPU time for multistart, in seconds
ms_maxtime_real Maximum real time for multistart, in seconds
ms_num_to_save Feasible points to save from multistart
ms_outsub Enable subproblem output for parallel multistart
ms_savetol Tol for feasible points being equal
ms_seed Seed for multistart random generator
ms_startptrange Maximum variable range for multistart
ms_terminate Termination condition for multistart
newpoint Use newpoint feature
objno objective number: 0 = none, 1 = first (default),

2 = second (if _nobjs > 1), etc.
objrange Objective range
objrep Whether to replace

minimize obj: v;
with
minimize obj: f(x)

when variable v appears linearly
in exactly one constraint of the form
s.t. c: v >= f(x);

or
s.t. c: v == f(x);

Possible objrep values:
0 = no
1 = yes for v >= f(x) (default)
2 = yes for v == f(x)
3 = yes in both cases

optionsfile Name/location of Knitro options file if provided
opttol Optimality stopping tolerance
opttol_abs Absolute optimality tolerance
opttolabs Absolute optimality tolerance
out_csvinfo Create knitro_solve.csv info file
out_csvname Name for csv info file
out_hints Print hints for parameter settings
outappend Append to output files (0=no, 1=yes)
outdir Directory for output files
outlev Control printing level
outmode Where to direct output (0=screen, 1=file, 2=both)
outname Name for output file
par_blasnumthreads Number of parallel threads for BLAS
par_lsnumthreads Number of parallel threads for linear solver
par_msnumthreads Number of parallel threads for multistart
par_numthreads Number of parallel threads

3.1. Knitro / AMPL reference 123



Artelys Knitro Documentation, Release 11.0.0

presolve Knitro presolver level
presolve_dbg Knitro presolver debugging level
presolve_tol Knitro presolver tolerance
qpcheck whether to check for a QP: 0 = no, 1 (default) = yes
relax whether to ignore integrality: 0 (default) = no, 1 = yes
restarts Maximum number of restarts allowed
restarts_maxit Maximum number of iterations before restarting
scale Automatic scaling option
soc Second order correction options
threads Number of parallel threads
timing Whether to report problem I/O and solve times:

0 (default) = no
1 = yes, on stdout

tuner Enables Knitro Tuner
tuner_maxtime_cpu Maximum CPU time when 'tuner=on', in seconds
tuner_maxtime_real Maximum real time when 'tuner=on', in seconds
tuner_optionsfile Name/location of Tuner options file if provided
tuner_outsub Enable subproblem output when 'tuner=on'
tuner_terminate Termination condition when 'tuner=on'
version Report software version
wantsol solution report without -AMPL: sum of

1 ==> write .sol file
2 ==> print primal variable values
4 ==> print dual variable values
8 ==> do not print solution message

xpresslibname Name of dynamic Xpress library
xtol Stepsize stopping tolerance
xtol_iters Stop based on small change in variables

These options are detailed below.

3.1.1 Knitro options in AMPL

• act_lpalg: LP subproblem algorithm in Active Set or SQP algorithm (default 0). See act_lpalg.

Value Description
0 default LP algorithm
1 primal simplex algorithm
2 dual simplex algorithm
3 barrier/interior-point algorithm

• act_lpdumpmps: Used for internal debugging.

• act_lpfeastol: feasibility tolerance for LP subproblems (default 1.0e-8). See act_lpfeastol.

• act_lppenalty: Use penalty formulation for LP subproblem in Active Set or SQP algorithm (default 1). See
act_lppenalty .

Value Description
1 penalize all constraints
2 penalize only nonlinear constraints
3 dynamically choose which constraints to penalize

• act_lppresolve: Control presolve for LP subproblems in Active Set or SQP algorithm (default 0). See
act_lppresolve.

124 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Value Description
0 presolve turned off for LP subproblems
1 presolve turned on for LP subproblems

• act_lpsolver: LP solver used in Active Set or SQP algorithm (default 1). See act_lpsolver.

• act_parametric: Use parametric LP subproblems in Active Set or SQP algorithm (default 1). See
act_parametric.

Value Description
0 do not use a parametric solve
1 use a parametric solve sometimes
2 always try a parametric solve

• act_qpalg: QP subproblem algorithm in Active Set or SQP algorithm (default 0). See act_qpalg.

Value Description
0 let Knitro decide the QP algorithm
1 Interior/Direct (barrier) algorithm
2 Interior/CG (barrier) algorithm
3 Active Set algorithm

• alg or algorithm: optimization algorithm used (default 0). See algorithm.

Value Description
0 let Knitro choose the algorithm
1 Interior/Direct (barrier) algorithm
2 Interior/CG (barrier) algorithm
3 Active Set algorithm
4 Sequential Quadratic Programming (SQP) algorithm
5 Run multiple algorithms

• bar_conic_enable: enable special treatment for conic constraints (default 0). See bar_conic_enable.

Value Description
0 do not apply any special treatment for conic constraints
1 apply special treatments for any Second Order Cone (SOC) constraints

• bar_directinterval: frequency for trying to force direct steps (default 10). See bar_directinterval.

• bar_feasible: whether feasibility is given special emphasis (default 0). See bar_feasible.

Value Description
0 no special emphasis on feasibility
1 iterates must honor inequalities
2 emphasize first getting feasible before optimizing
3 implement both options 1 and 2 above

• bar_feasmodetol: tolerance for entering stay feasible mode (default 1.0e-4). See bar_feasmodetol.

• bar_initmu: initial value for barrier parameter (default 1.0e-1). See bar_initmu.

• bar_initpi_mpec: initial value for barrier MPEC penalty parameter. Knitro uses an internal formula to initialize
the MPEC penalty parameter if a non-positive value is specified (default 0.0). See bar_initpi_mpec.

• bar_initpt: initial settings of x (if not set by user), slacks and multipliers for barrier algorithms (default 0). See
bar_initpt.

3.1. Knitro / AMPL reference 125



Artelys Knitro Documentation, Release 11.0.0

Value Description
0 let Knitro choose the initial point strategy
1 initialization strategy 1 (x unaffected if initialized by user)
2 initialization strategy 2 (x unaffected if initialized by user)
3 initialization strategy 3 (x unaffected if initialized by user)

• bar_maxcrossit: maximum number of allowable crossover iterations (default 0). See bar_maxcrossit.

• bar_maxrefactor: maximum number of KKT refactorizations allowed (default -1). See bar_maxrefactor.

• bar_murule: barrier parameter update rule (default 0). See bar_murule.

Value Description
0 let Knitro choose the barrier update rule
1 monotone decrease rule
2 adaptive rule based on complementarity gap
3 probing rule (Interior/Direct only)
4 safeguarded Mehrotra predictor-corrector type rule
5 Mehrotra predictor-corrector type rule
6 rule based on minimizing a quality function

• bar_penaltycons: technique for penalizing constraints in the barrier algorithms (default 0). See
bar_penaltycons.

Value Description
0 let Knitro choose the strategy
1 do not apply penalty approach to any constraints
2 apply a penalty approach to all general constraints

• bar_penaltyrule: penalty parameter rule for step acceptance (default 0). See bar_penaltyrule.

Value Description
0 let Knitro choose the strategy
1 use single penalty parameter approach
2 use more tolerant, flexible strategy

• bar_refinement: specify whether to refine barrier solution for more precision (default 0). See
bar_refinement.

Value Description
0 do not apply refinement phase
1 try to refine the barrier solution

• bar_relaxcons: specify whether to relax constraints in the barrier algorithms (default 2). See
bar_relaxcons.

Value Description
0 do not relax constraints
1 relax equality constraints only
2 relax inequality constraints only
3 relax all constraints

• bar_slackboundpush: minimum amount by which initial slack variables are pushed inside the bounds (default
1.0e-1). See bar_slackboundpush.

• bar_switchobj: the objective function to use when Knitro switches to feasibility phase in the barrier algorithms
(default 1). See bar_switchobj.

126 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Value Description
0 no (or zero) objective function
1 proximal point objective scaled by a scalar value
2 proximal point objective using a diagonal scaling

• bar_switchrule: controls technique for switching between feasibility phase and optimality phase in the barrier
algorithms (default 0). See bar_switchrule.

Value Description
0 let Knitro determine the switching procedure
1 never switch to feasibility phase
2 allow switches to feasibility phase
3 use more aggressive switching rule

• bar_watchdog: specify whether to enable watchdog heuristic for barrier algorithms (default 0). See
bar_watchdog.

Value Description
0 do not apply watchdog heuristic
1 enable watchdog heuristic

• blasoption: specify the BLAS/LAPACK function library to use (default 1). See blasoption.

Value Description
0 use Knitro built-in functions
1 use Intel Math Kernel Library functions
2 use the dynamic library specified with blasoptionlib

• blasoptionlib: specify the BLAS/LAPACK function library if using blasoption=2. See
blasoptionlib.

• bndrange: max limit for finite bounds (default 1e20). See bndrange.

• cg_maxit: maximum allowable conjugate gradient (CG) iterations (default 0). See cg_maxit.

Value Description
0 let Knitro set the number based on the problem size
n maximum of n > 0 CG iterations per minor iteration

• cg_pmem: amount of memory n used for the incomplete Cholesky preconditioner where n enforces the maxi-
mum number of nonzero elements per column in the matrix (default 10). See cg_pmem.

• cg_precond: whether or not to apply an incomplete Cholesky preconditioner for the CG subproblems in the
barrier algorithms (default 0). See cg_precond.

Value Description
0 no preconditioner used
1 apply incomplete Cholesky preconditioner

• cg_stoptol: relative stopping tolerance for CG subproblems (default 1.0e-2). See cg_stoptol.

• convex: declare the problem as convex (default 0). See convex.

Value Description
0 Knitro will try to automatically determine convexity
1 Knitro will treat the problem as convex

• debug: enable debugging output (default 0). See debug.

3.1. Knitro / AMPL reference 127



Artelys Knitro Documentation, Release 11.0.0

Value Description
0 no extra debugging
1 print info to debug solution of the problem
2 print info to debug execution of the solver

• delta: initial trust region radius scaling (default 1.0e0). See delta.

• feastol: feasibility termination tolerance (relative) (default 1.0e-6). See feastol.

• feastol_abs: feasibility termination tolerance (absolute) (default 1.0e-3). See feastol_abs.

• fstopval: stop based on user-defined function value (default KN_INFINITY). See fstopval.

• ftol: stop based on small (feasible) changes in the objective function (default 1.0e-15). See ftol.

• ftol_iters: stop based on small (feasible) changes in the objective function (default 5). See ftol_iters.

• gradopt: gradient computation method (default 1). See gradopt.

Value Description
1 use exact gradients
2 compute forward finite-difference approximations
3 compute centered finite-difference approximations

• hessopt: Hessian (Hessian-vector) computation method (default 1). See hessopt.

Value Description
1 use exact Hessian derivatives
2 use dense quasi-Newton BFGS Hessian approximation
3 use dense quasi-Newton SR1 Hessian approximation
4 compute Hessian-vector products by finite diffs
5 compute exact Hessian-vector products
6 use limited-memory BFGS Hessian approximation

• honorbnds: allow or not bounds to be violated during the optimization (default 2). See honorbnds.

Value Description
0 allow bounds to be violated during the optimization
1 enforce bounds satisfaction of all iterates
2 enforce bounds satisfaction of initial point

• infeastol: tolerance for declaring infeasibility (default 1.0e-8). See infeastol.

• linesearch: linesearch strategy for algorithms using a linesearch (default 0). See linesearch.

Value Description
0 let Knitro automatically choose the strategy
1 use a simple backtracking linesearch
2 use a cubic interpolation linesearch

• linesearch_maxtrials: maximum number of linesearch trial evaluations (default 3). See
linesearch_maxtrials.

• linsolver: linear system solver to use inside Knitro (default 0). See linsolver.

128 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Value Description
0 let Knitro choose the linear system solver
1 (not currently used; same as 0)
2 use a hybrid approach; solver depends on system
3 use a dense QR method (small problems only)
4 use HSL MA27 sparse symmetric indefinite solver
5 use HSL MA57 sparse symmetric indefinite solver
6 use Intel MKL PARDISO sparse symmetric indefinite solver

• linsolver_ooc: solve linear system out-of-core (default 0). See linsolver_ooc.

Value Description
0 do not solve linear systems out-of-core
1 invoke Intel MKL PARDISO out-of-core option sometimes (only when linsolver = 6)
2 invoke Intel MKL PARDISO out-of-core option always (only when linsolver = 6)

• linsolver_pivottol: initial pivot threshold for matrix factorizations (default 1.0e-8). See
linsolver_pivottol.

• lmsize: number of limited-memory pairs stored in LBFGS approach (default 10). See lmsize.

• ma_maxtime_cpu: maximum CPU time in seconds before terminating for the multi-algorithm (alg=5) pro-
cedure (default 1.0e8). See ma_maxtime_cpu.

• ma_maxtime_real: maximum real time in seconds before terminating for the multi-algorithm (alg=5) proce-
dure (default 1.0e8). See ma_maxtime_real.

• ma_outsub: enable writing algorithm output to files for the multi-algorithm (alg=5) procedure (default 0).
See ma_outsub.

Value Description
0 do not write detailed algorithm output to files
1 write detailed algorithm output to files named knitro_ma_*.log

• ma_terminate: termination condition for multi-algorithm (alg=5) procedure (default 1). See
ma_terminate.

Value Description
0 terminate after all algorithms have completed
1 terminate at first local optimum
2 terminate at first feasible solution
3 terminate after first completed optimization (any termination status)

• maxfevals: maximum number of function evaluations before terminating (default unlimited). See maxfevals.

• maxit: maximum number of iterations before terminating (default 0). See maxit.

Value Description
0 let Knitro set the number based on the problem
n maximum limit of n > 0 iterations

• maxtime_cpu: maximum CPU time in seconds before terminating (default 1.0e8). See maxtime_cpu.

• maxtime_real: maximum real time in seconds before terminating (default 1.0e8). See maxtime_real.

• mip_branchrule: MIP branching rule (default 0). See mip_branchrule.

Value Description
0 let Knitro choose the branching rule
1 most-fractional branching
2 pseudo-cost branching
3 strong branching

3.1. Knitro / AMPL reference 129



Artelys Knitro Documentation, Release 11.0.0

• mip_debug: MIP debugging level (default 0). See mip_debug.

Value Description
0 no MIP debugging output
1 print MIP debugging information

• mip_gub_branch: Branch on GUBs (default 0). See mip_gub_branch.

Value Description
0 do not branch on GUB constraints
1 allow branching on GUB constraints

• mip_heuristic: heuristic search approach (default 0). See mip_heuristic.

Value Description
0 let Knitro decide whether to apply a heuristic
1 do not apply any heuristic
2 use feasibility pump heuristic
3 use MPEC heuristic

• mip_heuristic_maxit: heuristic search iteration limit (default 100). See mip_heuristic_maxit.

• mip_heuristic_terminate: heuristic termination condition (default 1). See mip_heuristic_terminate.

Value Description
1 terminate at first feasible point or iteration limit
2 always run the heuristic to the iteration limit

• mip_implications: add logical implications (default 1). See mip_implications.

Value Description
0 do not add constraints from logical implications
1 add constraints from logical implications

• mip_integer_tol: threshold for deciding integrality (default 1.0e-8). See mip_integer_tol.

• mip_integral_gap_abs: absolute integrality gap stop tolerance (default 1.0e-6). See
mip_integral_gap_abs.

• mip_integral_gap_rel: relative integrality gap stop tolerance (default 1.0e-6). See
mip_integral_gap_rel.

• mip_intvar_strategy: treatment of integer variables (default 0). See mip_intvar_strategy .

Value Description
0 no special treatment
1 relax all integer variables
2 convert all binary variables to complementarity constraints

• mip_knapsack: add knapsack cuts (default 1). See mip_knapsack.

Value Description
0 do not add knapsack cuts
1 add knapsack inequality cuts only
2 add knapsack inequality and equality cuts

• mip_lpalg: LP subproblem algorithm (default 0). See mip_lpalg.

Value Description
0 let Knitro decide the LP algorithm
1 Interior/Direct (barrier) algorithm
2 Interior/CG (barrier) algorithm
3 Active Set (simplex) algorithm

130 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

• mip_maxnodes: maximum nodes explored (default 100000). See mip_maxnodes.

• mip_maxsolves: maximum subproblem solves (default 200000). See mip_maxsolves.

• mip_maxtime_cpu: maximum CPU time in seconds for MIP (default 1.0e8). See mip_maxtime_cpu.

• mip_maxtime_real: maximum real time in seconds for MIP (default 1.0e8). See mip_maxtime_real.

• mip_method: MIP method (default 0). See mip_method.

Value Description
0 let Knitro choose the method
1 branch and bound method
2 hybrid method for convex nonlinear models
3 mixed-integer SQP method

• mip_nodealg: standard node relaxation algorithm (default 0). See mip_nodealg.

Value Description
0 let Knitro decide the node algorithm
1 Interior/Direct (barrier) algorithm
2 Interior/CG (barrier) algorithm
3 Active Set algorithm
4 SQP algorithm
5 Run multiple algorithms

• mip_outinterval: MIP node output interval (default 10). See mip_outinterval.

• mip_outlevel: MIP output level (default 1). See mip_outlevel.

• mip_outsub: enable MIP subproblem debug output (default 0). See mip_outsub.

• mip_pseudoinit: method to initialize pseudo-costs (default 0). See mip_pseudoinit.

Value Description
0 let Knitro choose the method
1 use average value
2 use strong branching

• mip_relaxable: are integer variables relaxable? (default 1). See mip_relaxable.

Value Description
0 integer variables are not relaxable
1 all integer variables are relaxable

• mip_rootalg: root node relaxation algorithm (default 0). See mip_rootalg.

Value Description
0 let Knitro decide the root algorithm
1 Interior/Direct (barrier) algorithm
2 Interior/CG (barrier) algorithm
3 Active Set algorithm
4 SQP algorithm
5 Run multiple algorithms

• mip_rounding: MIP rounding rule (default 0). See mip_rounding.

3.1. Knitro / AMPL reference 131



Artelys Knitro Documentation, Release 11.0.0

Value Description
0 let Knitro choose the rounding rule
1 do not attempt rounding
2 use fast heuristic
3 apply rounding solve selectively
4 apply rounding solve always

• mip_selectdir: MIP node selection direction (default 0). See mip_selectdir.

Value Description
0 choose down (i.e. <=) node first
1 choose up (i.e. >=) node first

• mip_selectrule: MIP node selection rule (default 0). See mip_selectrule.

Value Description
0 let Knitro choose the node select rule
1 use depth first search
2 use best bound node selection
3 use a combination of depth first and best bound

• mip_strong_candlim: strong branching candidate limit (default 10). See mip_strong_candlim.

• mip_strong_level: strong branching level limit (default 10). See mip_strong_level.

• mip_strong_maxit: strong branching subproblem iteration limit (default 1000). See mip_strong_maxit.

• mip_terminate: termination condition for MIP (default 0). See mip_terminate.

Value Description
0 terminate at optimal solution
1 terminate at first integer feasible solution

• ms_deterministic: whether to use a deterministic version of multi-start (default 1). See
ms_deterministic.

Value Description
0 multithreaded multi-start is non-deterministic
1 multithreaded multi-start is deterministic (when ms_terminate = 0)

• ms_enable: multi-start feature (default 0). See ms_enable.

Value Description
0 multi-start disabled
1 multi-start enabled

• ms_maxbndrange: maximum range to vary unbounded x when generating start points (default 1.0e3). See
ms_maxbndrange.

• ms_maxsolves: maximum number of start points to try during multi-start (default 0). See ms_maxsolves.

Value Description
0 let Knitro set the number based on problem size
n try exactly n > 0 start points

• ms_maxtime_cpu: maximum CPU time for multi-start, in seconds (default 1.0e8). See ms_maxtime_cpu.

• ms_maxtime_real: maximum real time for multi-start, in seconds (default 1.0e8). See ms_maxtime_real.

• ms_num_to_save: number of feasible points to save in knitro_mspoints.log (default 0). See
ms_num_to_save.

• ms_outsub: enable writing output from subproblem solves to files for parallel multi-start (default 0). See
ms_outsub.

132 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Value Description
0 do not write subproblem output to files
1 write detailed subproblem output to files named knitro_ms_*.log

• ms_savetol: tolerance for feasible points to be considered distinct (default 1.0e-6). See ms_savetol.

• ms_seed: seed value used to generate random initial points in multi-start; should be a non-negative integer
(default 0). See ms_seed.

• ms_startptrange: maximum range to vary all x when generating start points (default 1.0e20). See
ms_startptrange.

• ms_terminate: termination condition for multi-start (default 0). See ms_terminate.

Value Description
0 terminate after ms_maxsolves
1 terminate at first local optimum (if before ms_maxsolves)
2 terminate at first feasible solution (if before ms_maxsolves)
3 terminate after first completed optimization (any termination status)

• newpoint: how to save new points found by the solver. (default 0). See newpoint.

Value Description
0 no action
1 save the latest new point to file knitro_newpoint.log
2 append all new points to file knitro_newpoint.log

• objrange: maximum allowable objective function magnitude (default 1.0e20). See objrange.

• optionsfile: path that specifies the location of a Knitro options file if used.

• opttol: optimality termination tolerance (relative) (default 1.0e-6). See opttol.

• opttol_abs: optimality termination tolerance (absolute) (default 1.0e-3). See opttol_abs.

• out_csvinfo: create knitro_solve.csv information file (default 0). See out_csvinfo.

Value Description
0 do not create solve information file
1 create solve information file

• out_csvname: custom name for csv information file (default knitro_solve.csv). See out_csvname.

• out_hints: print diagnostic hints at the end of the solve (default 1). See out_hints.

Value Description
0 do not print hints
1 print hints

• outappend: append output to existing files (default 0). See outappend.

Value Description
0 do not append
1 do append

• outdir: directory where output files are created. See outdir.

• outlev: printing output level (default 2). See outlev .

3.1. Knitro / AMPL reference 133



Artelys Knitro Documentation, Release 11.0.0

Value Description
0 no printing
1 just print summary information
2 print basic information every 10 iterations
3 print basic information at each iteration
4 print all information at each iteration
5 also print final (primal) variables
6 also print final Lagrange multipliers (sensitivies)

• outmode: Knitro output redirection (default 0). See outmode.

Value Description
0 direct Knitro output to standard out (e.g., screen)
1 direct Knitro output to the file knitro.log
2 print to both the screen and file knitro.log

• outname: custom name for Knitro log file (default knitro.log). See outname.

• par_blasnumthreads: specify the number of threads to use for BLAS (default 1). See
par_blasnumthreads.

Value Description
1 for any non-positive value
n use n > 0 threads

• par_lsnumthreads: specify the number of threads to use for linear system solves (default 1). See
par_lsnumthreads.

Value Description
1 for any non-positive value
n use n > 0 threads

• par_msnumthreads: specify the number of threads to use for multistart (default 0). See
par_msnumthreads.

Value Description
0 let Knitro choose the number of threads
n use n > 0 threads

• par_numthreads: specify the number of threads to use for all parallel features (default 1). See
par_numthreads.

Value Description
0 determine by environment variable $OMP_NUM_THREADS
n use n > 0 threads

• presolve: enable Knitro presolver (default 1). See presolve.

Value Description
0 do not use Knitro presolver
1 use the Knitro presolver

• presolve_dbg: presolve debug output (default 0).

Value Description
0 no debugging information
2 print the Knitro problem with AMPL model names

• presolve_tol: tolerance used by Knitro presolver to remove variables and constraints (default 1.0e-6). See
presolve_tol.

• restarts: enable automatic restarts (default 0). See restarts.

134 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Value Description
0 do not enable automatic restarts
n maximum of n > 0 restarts allowed

• restarts_maxit: maximum number of iterations before enforcing a restart (default 0). See restarts_maxit.

• scale: automatic scaling (default 1). See scale.

Value Description
0 do not scale the problem
1 perform automatic scaling of functions

• soc: 2nd order corrections (default 1). See soc.

Value Description
0 do not allow second order correction steps
1 selectively try second order correction steps
2 always try second order correction steps

• tuner: Invoke Knitro-Tuner (default 0). See tuner.

Value Description
0 tuner disabled
1 tuner enabled

• tuner_maxtime_cpu: maximum CPU time in seconds before terminating the Knitro-Tuner (tuner=1) proce-
dure (default 1.0e8). See tuner_maxtime_cpu.

• tuner_maxtime_real: maximum real time in seconds before terminating the Knitro-Tuner (tuner=1) proce-
dure (default 1.0e8). See tuner_maxtime_real.

• tuner_optionsfile: path that specifies the location of a Knitro-Tuner (tuner=1) options file if used.

• tuner_outsub: enable writing additional Tuner subproblem solve output to files for the Knitro-Tuner
(tuner=1) procedure (default 0). See tuner_outsub.

Value Description
0 do not write detailed algorithm output to files
1 write summary solve output to a file named knitro_tuner_summary.log
2 write detailed algorithm output to files named knitro_tuner_*.log

• tuner_terminate: termination condition for Knitro-Tuner (tuner=1) procedure (default 0). See
tuner_terminate.

Value Description
0 terminate after all solves have completed
1 terminate at first local optimum
2 terminate at first feasible solution
3 terminate after first completed optimization (any termination status)

• xtol: stepsize termination tolerance (default 1.0e-15). See xtol.

• xtol_iters: stop based on small changes in the solution estimate. See xtol_iters.

3.1.2 Return codes

Upon completion, Knitro displays a message and returns an exit code to AMPL. If Knitro found a solution, it displays
the message:

Locally optimal or satisfactory solution

3.1. Knitro / AMPL reference 135



Artelys Knitro Documentation, Release 11.0.0

with exit code of zero; the exit code can be seen by typing:

ampl: display solve_result_num;

If a solution is not found, then Knitro returns a non-zero return code from the table below:

Value Description
0 Locally optimal or satisfactory solution.
100 Current feasible solution estimate cannot be improved. Nearly optimal.
101 Relative change in feasible solution estimate < xtol.
102 Current feasible solution estimate cannot be improved.
103 Relative change in feasible objective < ftol for ftol_iters.
200 Convergence to an infeasible point. Problem may be locally infeasible.
201 Relative change in infeasible solution estimate < xtol.
202 Current infeasible solution estimate cannot be improved.
203 Multistart: No primal feasible point found.
204 Problem determined to be infeasible with respect to constraint bounds.
205 Problem determined to be infeasible with respect to variable bounds.
300 Problem appears to be unbounded.
400 Iteration limit reached. Current point is feasible.
401 Time limit reached. Current point is feasible.
402 Function evaluation limit reached. Current point is feasible.
403 MIP: All nodes have been explored. Integer feasible point found.
404 MIP: Integer feasible point found.
405 MIP: Subproblem solve limit reached. Integer feasible point found.
406 MIP: Node limit reached. Integer feasible point found.
410 Iteration limit reached. Current point is infeasible.
411 Time limit reached. Current point is infeasible.
412 Function evaluation limit reached. Current point is infeasible.
413 MIP: All nodes have been explored. No integer feasible point found.
415 MIP: Subproblem solve limit reached. No integer feasible point found.
416 MIP: Node limit reached. No integer feasible point found.
501 LP solver error.
502 Evaluation error.
503 Not enough memory.
504 Terminated by user.
505 Terminated after derivative check.
506 Input or other API error.
507 Internal Knitro error.
508 Unknown termination.
509 Illegal objno value.

For more information on return codes, see Return codes.

3.1.3 AMPL suffixes defined for Knitro

To represent values associated with a model component, AMPL employs various qualifiers or suffixes appended to
component names. A suffix consists of a period or “dot” (.) followed by a short identifier (ex: x1.lb returns the
current lower bound of the variable x1).

A lot of built-in suffixes are available in AMPL, you may find the list at http://www.ampl.com/NEW/suffbuiltin.html.

136 Chapter 3. Reference manual

http://www.ampl.com/NEW/suffbuiltin.html


Artelys Knitro Documentation, Release 11.0.0

To allow more solver-specific results of optimization, AMPL permits solver drivers to define new suffixes and to
associate solution result information with them. Below is the list of the suffixes defined specifically for Knitro.

Suffix Name Description Model component
honorbnd Specify variables that must always satisfy bounds; see

honorbnds (input)
variable

intvarstrategy Treatment of integer variables; see
mip_intvar_strategy (input)

variable

cfeastol Specify individual constraint feasibility tolerances (input) constraint
xfeastol Specify individual variable bound feasibility tolerances

(input)
variable

xscalefactor Specify custom variable scaling factors (input) variable
xscalecenter Specify custom variable scaling centers (input) variable
cscalefactor Specify custom constraint scaling factors (input) constraint
objscalefactor Specify custom objective scaling factor (input) objective
relaxbnd Retrieve the best relaxation bound for MIP (output) objective
incumbent Retrieve the incumbent solution for MIP (output) objective
priority Specify branch priorities for MIP (input) variable
numiters Retrieve the number of iterations (output) objective
numfcevals Retrieve the number of function evaluations (output) objective
opterror Retrieve the final optimality error (output) objective, variable, constraint
feaserror Retrieve the final feasibility error (output) objective, variable, constraint

Below is an example on how to use the specific Knitro suffixes in AMPL:

1 var x{j in 1..3} >= 0;
2

3 minimize obj: 1000 - x[1]^2 - 2*x[2]^2 - x[3]^2 - x[1]*x[2] - x[1]*x[3];
4

5 s.t. c1: 8*x[1] + 14*x[2] + 7*x[3] - 56 = 0;
6

7 s.t. c2: x[1]^2 + x[2]^2 + x[3]^2 -25 >= 0;
8

9 suffix xfeastol IN, >=0, <=1e6;
10 suffix cfeastol IN, >=0, <=1e6;
11 suffix objscalefactor IN, >=1e-6, <=1e6;
12

13 let x[1].xfeastol := 1e-1;
14 let c1.cfeastol := 1e-2;
15 let obj.objscalefactor := 2;
16

17 solve;
18

19 display x[1].feaserror;
20 display c1.opterror;
21 display obj.numfcevals;
22 display obj.feaserror;
23 display obj.opterror;

Below is the corresponding output:

Final Statistics
----------------
Final objective value = 9.51000000020162e+002
Final feasibility error (abs / rel) = 7.11e-015 / 4.55e-016
Final optimality error (abs / rel) = 3.84e-009 / 1.37e-010
# of iterations = 9

3.1. Knitro / AMPL reference 137



Artelys Knitro Documentation, Release 11.0.0

# of CG iterations = 2
# of function evaluations = 12
# of gradient evaluations = 11
# of Hessian evaluations = 9
Total program time (secs) = 0.035 ( 0.000 CPU time)
Time spent in evaluations (secs) = 0.000

===============================================================================

Locally optimal or satisfactory solution.
objective 951; feasibility error 7.11e-15
9 iterations; 12 function evaluations

suffix feaserror OUT;
suffix opterror OUT;
suffix numfcevals OUT;
suffix numiters OUT;
x[1].feaserror = 0

c1.opterror = 0

obj.numfcevals = 12

obj.feaserror = 7.10543e-15

obj.opterror = 3.84018e-09

3.1.4 Nonlinear Least Squares

In some cases it may be more efficient to use the specialized Knitro API for nonlinear least-squares (see Nonlinear
Least Squares), which internally applies the Gauss-Newton Hessian, to solve a least-squares model formulated in
AMPL. In particular this may be useful if the exact Hessian computed by AMPL is expensive. You can apply this
specialized interface through AMPL by following these steps:

• Set the objective function to 0

• Specify each residual function as an equality constraint

• Turn the AMPL presolver off by setting

option presolve 0;

• Tell Knitro to apply the least-squares interface and disable presolve by setting

option knitro_options "leastsquares=1 presolve=0";

Below is an example of how to solve nonlinear least-squares problems in AMPL:

1 ###########################################################
2 #### LSQ in AMPL with Knitro ####
3 #### ####
4 #### This example illustrates how to optimize least ####
5 #### squares problems in AMPL by formulating it using ####
6 #### AMPL syntax and also using Knitro least squares ####
7 #### dedicated API. ####
8 ###########################################################
9

138 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

10 # Reset AMPL
11 reset;
12

13 # Reset initial guesses between consecutive runs
14 option reset_initial_guesses 1;
15

16 # Reinitialize random seed for generating same values over runs
17 option randseed 1;
18

19 ### The first part of the example will demonstrate how to formulate a
20 ### least squares problem in AMPL using usual AMPL syntax.
21 ### Also, we will illustrate an AMPL trick to improve performances.
22

23 # We use a large number to demonstrate the AMPL expansion trick
24 param M := 1000000;
25

26 # Create random values for the "estimates"
27 param alpha{1..M};
28 let{i in 1..M} alpha[i] := Uniform01();
29

30 # Variable: minimize the sum of squares of the distance between var_alpha
31 # and the "estimates"
32 var var_alpha;
33

34 ### 1. Straightforward least squares formulation with no expansion ###
35

36 ## Straightforward least square problem.
37 ## The objective is expressed directly, without expanding the square terms.
38 minimize obj_no_expand:
39 0.5 * sum{i in 1..M} (alpha[i]-var_alpha)^2;
40

41 # Optimize non-expanded problem
42 solve obj_no_expand;
43

44

45 ### 2. Least squares with square terms expansion ###
46

47 ## Same problem but this time the objective is expanded.
48 ## Notice that, using this trick, the runtime decreases significantly.
49 minimize obj_expanded:
50 0.5 * (
51 M * var_alpha^2 -
52 2 * var_alpha * ( sum{i in 1..M} alpha[i] ) +
53 sum{i in 1..M} alpha[i]^2
54 );
55

56 # Optimize expanded problem
57 solve obj_expanded;
58

59 # Check objective value
60 display obj_expanded - obj_no_expand;
61

62

63 ### 3. Least squares using Knitro LSQ API ###
64

65 # Set Ampl and Knitro options
66 option presolve 0; # disable AMPL presolve, this is mandatory!
67 option knitro_options "leastsquares=1 presolve=0"; # Enable Knitro LSQ

3.1. Knitro / AMPL reference 139



Artelys Knitro Documentation, Release 11.0.0

68

69 ## Same problem but this time based on Knitro's least-squares API.
70 # Objective must be constant
71 minimize obj_lsq: 0;
72

73 # Each residual is a constraint: residual = 0
74 # s.t. res{i in 1..M}:(alpha[i]-var_alpha)^2 = 0;
75 s.t. res{i in 1..M}:
76 alpha[i] - var_alpha = 0;
77

78 # Optimize problem using on Knitro LSQ API
79 solve obj_lsq;

Below is the corresponding (filtered) output:

[...]

Iter Objective FeasError OptError ||Step|| CGits
-------- -------------- ---------- ---------- ---------- -------

0 1.665516e+005 0.000e+000
1 4.168899e+004 0.000e+000 2.754e-013 4.997e-001 0

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 4.16889869527361e+004
Final feasibility error (abs / rel) = 0.00e+000 / 0.00e+000
Final optimality error (abs / rel) = 2.75e-013 / 3.30e-014
# of iterations = 1
# of CG iterations = 0
# of function evaluations = 4
# of gradient evaluations = 3
# of Hessian evaluations = 1
Total program time (secs) = 0.452 ( 0.453 CPU time)
Time spent in evaluations (secs) = 0.274

===============================================================================

[...]

Iter Objective FeasError OptError ||Step|| CGits
-------- -------------- ---------- ---------- ---------- -------

0 1.665516e+005 0.000e+000
1 4.168899e+004 0.000e+000 0.000e+000 4.997e-001 0

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 4.16889869527314e+004
Final feasibility error (abs / rel) = 0.00e+000 / 0.00e+000
Final optimality error (abs / rel) = 0.00e+000 / 0.00e+000
# of iterations = 1
# of CG iterations = 0
# of function evaluations = 4
# of gradient evaluations = 3
# of Hessian evaluations = 1

140 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Total program time (secs) = 0.002 ( 0.000 CPU time)
Time spent in evaluations (secs) = 0.000

===============================================================================

[...]

Iter Objective FeasError OptError ||Step|| CGits
-------- -------------- ---------- ---------- ---------- -------

0 1.665516e+005 0.000e+000
1 4.168899e+004 0.000e+000 1.376e-009 4.997e-001 0

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 4.16889869527361e+004
Final feasibility error (abs / rel) = 0.00e+000 / 0.00e+000
Final optimality error (abs / rel) = 1.38e-009 / 3.30e-014
# of iterations = 1
# of CG iterations = 0
# of residual evaluations = 4
# of Jacobian evaluations = 2
Total program time (secs) = 0.301 ( 0.500 CPU time)
Time spent in evaluations (secs) = 0.163

3.2 Knitro / MATLAB reference

Usage of knitromatlab is described here.

3.2.1 What is knitromatlab?

knitromatlab is the interface used to call Knitro from the MATLAB environment.

knitromatlab‘s syntax is similar to MATLAB’s built-in optimization function fmincon. The main differences are:

• knitromatlab has additional input arguments for additional features and options.

• There is a separate function, knitromatlab_mip, to solve mixed-integer nonlinear programs.

• knitromatlab does not require the Optimization Toolbox.

• Many returned flags and messages differ, because they are returned directly from Knitro libraries.

3.2.2 Syntax

The most elaborate form is

[x,fval,exitflag,output,lambda,grad,hessian] = ...
knitromatlab(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,extendedFeatures,options,knitroOpts)

but the simplest function call reduces to:

x = knitromatlab(fun,x0)

3.2. Knitro / MATLAB reference 141



Artelys Knitro Documentation, Release 11.0.0

Any of the following forms may be used:

x = knitromatlab(fun,x0)
x = knitromatlab(fun,x0,A,b)
x = knitromatlab(fun,x0,A,b,Aeq,beq)
x = knitromatlab(fun,x0,A,b,Aeq,beq,lb,ub)
x = knitromatlab(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = knitromatlab(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,extendedFeatures)
x = knitromatlab(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,extendedFeatures,options)
x = knitromatlab(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,extendedFeatures,options,knitroOpts)
[x,fval] = knitromatlab(...)
[x,fval,exitflag] = knitromatlab(...)
[x,fval,exitflag,output] = knitromatlab(...)
[x,fval,exitflag,output,lambda,] = knitromatlab(...)
[x,fval,exitflag,output,lambda,grad] = knitromatlab(...)
[x,fval,exitflag,output,lambda,grad,hessian] = knitromatlab(...)

x = knitromatlab_mip(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,xType)
x = knitromatlab_mip(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,xType,objFnType)
x = knitromatlab_mip(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,xType,objFnType,cineqFnType)
x = knitromatlab_mip(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,xType,objFnType,cineqFnType, ...

extendedFeatures)
x = knitromatlab_mip(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,xType,objFnType,cineqFnType, ...

extendedFeatures,options)
x = knitromatlab_mip(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,xType,objFnType,cineqFnType, ...

extendedFeatures,options,knitroOpts)
[x,fval] = knitromatlab_mip(...)
[x,fval,exitflag] = knitromatlab_mip(...)
[x,fval,exitflag,output] = knitromatlab_mip(...)
[x,fval,exitflag,output,lambda,] = knitromatlab_mip(...)
[x,fval,exitflag,output,lambda,grad] = knitromatlab_mip(...)
[x,fval,exitflag,output,lambda,grad,hessian] = knitromatlab_mip(...)

An additional function, knitrolink, may be used in place of the old ktrlink interface. knitrolink has the same input and
output arguments as ktrlink, but it is equivalent to using knitromatlab with an empty array for the value of extended-
Features. If you are using knitrolink, please switch to knitromatlab as the knitrolink function will be deprecated in a
future release.

142 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

3.2.3 Input Arguments

Input Argument Description
fun The function to be minimized.

fun accepts a vector x and returns a scalar f, the objective
function evaluated at x.
If exact gradients are used, an additional vector with the
objective gradient should be returned.

x0 The initial point vector.
A Linear inequality constraint coefficient matrix.
b Linear inequality constraint upper bound vector.
Aeq Linear equality constraint coefficient matrix.
beq Linear equality constraint right-hand side vector.
lb Variable lower bound vector.
ub Variable upper bound vector.
nonlcon The function that computes the nonlinear inequality and

equality constraints.
nonlcon accepts a vector x and returns two vectors, the
values of the nonlinear inequality functions at x and the
values of the nonlinear equality functions at x.
If exact gradients are used, two additional matrices
should be returned with the gradients for the nonlinear
inequality functions and the gradients for the nonlinear
equality functions.

3.2. Knitro / MATLAB reference 143



Artelys Knitro Documentation, Release 11.0.0

extendedFeatures The structure used to define other, extended modeling
features of Knitro.
Currently it is used for complementarity constraints,
the output function, parallel finite differencing, ini-
tial lambda values, custom finite-difference step sizes,
custom feasibility tolerances, custom scalings, custom
treatments of integer variables, specification of linear
variables, custom setting of honor bounds, and some
Hessian and Jacobian information.
The two complementarity constraint fields are
extendedFeatures.ccIndexList1 and extendedFea-
tures.ccIndexList2 which contain the variable index lists
for variables complementary to each other. The same
index may not appear more than once in the lists.
The lambdaInitial field allows the user to specify the ini-
tial lambda values in a structure with a different field for
each constraint type. The fields are ineqlin for linear in-
equality constraints, eqlin for linear equality constraints,
ineqnonlin for nonlinear inequality constraints, eqnon-
lin for nonlinear equality constraints, upper for upper
bounds of variables, and lower for lower bounds of vari-
ables. If only some of the fields are defined, the missing
fields will be filled with zeros. If none of the fields are
defined, Knitro will compute an initial value.
The FinDiffRelStep field can be used to specify custom
step size values for finite-differencing.
The LinearVars field can be used to specify which vari-
ables in the model only appear linearly in the objec-
tive and constraints. This information can then be
used to perform additional presolve operations. See
KTR_set_linearvars() for more details.
The HonorBnds field can be used to specify which vari-
ables in the model must satisfy their bounds throughout
the optimization. See KTR_set_honorbnds() for
more details.
The fields AFeasTols, AeqFeasTols, cFeasTols, ce-
qFeasTols, and xFeasTols can be used to specify custom
feasibility tolerances for problem constraints and vari-
ables.
The fields AScaleFactors, AeqScaleFactors, cScaleFac-
tors, ceqScaleFactors, xScaleFactors, xScaleCenters,
and objScaleFactor can be used to specify custom
scalings for problem constraints, variables, and the
objective. See KTR_set_var_scalings(),
KTR_set_con_scalings() and
KTR_set_obj_scaling() for details on how
these scalings should be defined.
The field xIntStrategy can be used to specify cus-
tomized treatments for integer variables. See
KTR_mip_set_intvar_strategy() for more
details.
The other six available fields are JacobPattern, HessPat-
tern, HessFcn, HessMult, OutputFcn, and UseParallel.
They have the same properties as the options set by op-
timset.

144 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

options The options structure set with optimset.
knitroOpts The text file with Knitro options.

The objective function, fun, can be specified as a function handle for a MATLAB function, as in

x = knitromatlab(@objFunc,x0)

with a function

function [f,g] = objFunc(x)
f = x^2;
g = 2*x;

or as a function handle for an anonymous function:

x = knitromatlab(@(x)x^2,x0)

The constraint function, nonlcon, is similar, but it returns at least two vectors, c and ceq. It may additionally return two
matrices, the gradient matrix of the nonlinear inequality constraints, and the gradient matrix of the nonlinear equality
constraints. The third and fourth arguments are only needed when GradConstr is ‘on’ or gradopt is set to 1. See
http://www.mathworks.com/help/optim/ug/nonlinear-constraints-with-gradients.html for more details.

3.2.4 Output Arguments

Output
Argument

Description

x The optimal solution vector.
fval The optimal solution objective value.
exitflag Integer identifying the reason for termination of the algorithm.
output Structure containing information about the optimization.
lambda Structure containing the Lagrange multipliers at the solution with a different field for each

constraint type.
grad Gradient vector at x.
hessian Hessian matrix at x. For notes on when this option is available, see

KTR_get_hessian_values().

3.2.5 Output Structure Fields

Output Argument Field Description
output iterations Number of iterations.
output funcCount Number of function evaluations.
output constrviolation Maximum of constraint violations.
output firstorderopt Measure of first-order optimality.
lambda lower Lower bounds
lambda upper Upper bounds
lambda ineqlin Linear inequalities
lambda eqlin Linear equalities
lambda ineqnonlin Nonlinear inequalities
lambda eqnonlin Nonlinear equalities

3.2. Knitro / MATLAB reference 145

http://www.mathworks.com/help/optim/ug/nonlinear-constraints-with-gradients.html


Artelys Knitro Documentation, Release 11.0.0

3.2.6 Setting Options

knitromatlab takes up to two options inputs. The first is in fmincon format, using optimset, and the second is a Knitro
options text file. Because the full version of optimset requires a MATLAB Optimization Toolbox license, HessFcn,
HessMult, HessPattern, JacPattern, OutputFcn, and UseParallel can also be used with the extendedFeatures structure.
All the other options have equivalent ways of being set in the Knitro options text file. If a Knitro options text file is
specified, unspecified options will still use the default option values from the fmincon format options. Settings from
the Knitro options text file and the extendedFeatures structure will take precedence over settings made in the MATLAB
options structure. Note that options set with the optimoptions function are not compatible with knitromatlab functions.

To use Knitro options, create an options text file as described for the callable library, and include the file as the 12th
argument in the call to knitromatlab, or the 15th argument in the call to knitromatlab_mip.

Options Structure Example:

options = optimset('Algorithm', 'interior-point', 'Display','iter', ...
'GradObj','on','GradConstr','on', ...
'JacobPattern',Jpattern,'Hessian','user-supplied','HessPattern',Hpattern, ...
'HessFcn',@hessfun,'MaxIter',1000, ...
'TolX', 1e-15, 'TolFun', 1e-8, 'TolCon', 1e-8, 'UseParallel', true);

[x,fval,exitflag,output,lambda,grad,hess] = ...
knitromatlab(@objfun,x0,A,b,Aeq,beq,lb,ub,@constfun,[],options,[]);

The example above shows how to set options using the MATLAB options structure. The example below shows how
to set the same options using extendedFeatures and a Knitro options file.

Options File Example:

extendedFeatures.JacobPattern = Jpattern;
extendedFeatures.HessPattern = Hpattern;
extendedFeatures.HessFcn = @hessfun;
extendedFeatures.UseParallel = true;
[x,fval,exitflag,output,lambda,grad,hess] = ...

knitromatlab(@objfun,x0,A,b,Aeq,beq,lb,ub,@constfun,extendedFeatures,[], ...
'knitro.opt');

knitro.opt:

algorithm direct # Equivalent to setting 'Algorithm' to 'interior-point'
outlev iter_verbose # Equivalent to setting 'Display' to 'iter'
gradopt exact # Equivalent to setting 'GradObj' to 'on' and 'GradConstr' to 'on'
hessopt exact # Equivalent to setting 'Hessian' to 'on'
maxit 1000 # Equivalent to setting 'MaxIter' to 1000
xtol 1e-15 # Equivalent to setting 'TolX' to 1e-15
opttol 1e-8 # Equivalent to setting 'TolFun' to 1e-8
feastol 1e-8 # Equivalent to setting 'TolCon' to 1e-8

146 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

3.2.7 Options

Option Equivalent Knitro
Option

Description

Algorithm algorithm The optimization algorithm: ‘interior-point’, ‘active-set’, or
‘sqp’. Default: ‘interior-point’

AlwaysHonorConstraints honorbnds Bounds are satisfied at every iteration if set to the default
‘bounds’. They are not necessarily satisfied if set to ‘none’.

DerivativeCheck derivcheck Check the value of the user-provided exact gradients at a ran-
dom point against the finite difference gradients. If the dif-
ference is not within the specified tolerance, Knitro will stop
execution and display the violation. May be set to ‘off’ (de-
fault) or ‘on’.
The default relative tolerance is 1e-6, but can be changed
with the derivcheck_tol option in the Knitro options file. The
finite difference method is set by FinDiffType, and is set to
‘forward‘ by default.

Display outlev
Level of display

• ‘off’ or ‘none’ displays no output.
• ‘iter’ displays information for each iteration, and

gives the default exit message.
• ‘iter-detailed’ displays information for each iter-

ation, and gives the technical exit message.
• ‘notify’ displays output only if the function does

not converge, and gives the default exit message.
• ‘notify-detailed’ displays output only if the func-

tion does not converge, and gives the technical
exit message.

• ‘final’ (default) displays just the final output, and
gives the default exit message.

• ‘final-detailed’ displays just the final output, and
gives the technical exit message.

FinDiffType gradopt,
derivcheck_type

The finite difference type is either ‘forward’ (default) or
‘central’. ‘central’ takes twice as many function evalua-
tions and may violate bounds during evaluation, but is usu-
ally more accurate.
When exact derivatives are used and DerivativeCheck is
used, this option sets the finite difference type to ‘forward’
(default) or ‘central’ to compare with the exact derivatives.

3.2. Knitro / MATLAB reference 147



Artelys Knitro Documentation, Release 11.0.0

Option Equivalent Knitro
Option

Description

GradConstr gradopt
Gradient for nonlinear constraint functions.

• ‘off’ (default) sets the algorithm to use finite dif-
ferences to estimate the gradients of nonlinear
constraints.

• ‘on’ sets the algorithm to expect exact gradi-
ents of the nonlinear constraints in the third and
fourth constraint function outputs, as described
for nonlcon in the Input Arguments section.

To use sparse gradients, the sparsity pattern must be set with
the JacobPattern option.

GradObj gradopt
Gradient for nonlinear objective function.

• ‘off’ (default) sets the algorithm to use finite dif-
ferences to estimate the gradients of the objective
function.

• ‘on’ sets the algorithm to expect exact gradients
of the objective in the second objective function
outputs, as decribed for fval in the Input Argu-
ments section.

HessFcn Function handle to the user-supplied Hessian.
Default: []

Hessian hessopt Sets the Hessian option for Knitro.
Default: ‘bfgs’

HessMult Handle to a user-supplied function that returns a Hessian-
times-vector product.
Default: []

HessPattern Sparsity pattern of Hessian.
Default: ‘sparse(ones(n))’

InitBarrierParam bar_initmu Initial barrier value.
Default: 0.1

InitTrustRegionRadius delta Initial radius of the trust region.
Default: ‘sqrt(n)’

JacobPattern Sparsity pattern of the Jacobian of the nonlinear constraint
matrix. It can be used for finite-differencing or for user-
supplied gradients.
Default: ‘sparse(ones(Jrows,Jcols))’

MaxFunEvals maxfevals Maximum number of function evaluations allowed.
Default: -1 (no limit)

MaxIter maxit Maximum number of iterations allowed.
Default: 10000

MaxProjCGIter cg_maxit Tolerance for the number of projected conjugate gradient it-
erations.
Default: ‘2*(n-numberOfEqualities)’

ObjectiveLimit objrange Specifies the extreme limits of the objective function for pur-
poses of determining unboundedness.
If the magnitude of the objective function becomes greater
than objrange for a feasible iterate, then the problem is deter-
mined to be unbounded and Knitro proceeds no further.
Default: 1.0e20

OutputFcn newpoint
KTR_set_newpt_callback

Handle to a user-supplied function that is called after every
iteration of the algorithm and returns a boolean indicating if
the algorithm should stop. See more details below.
Default: []148 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Option Equivalent Knitro
Option

Description

ScaleProblem scale The default value of ‘obj-and-con’ allows Knitro to scale the
objective and constraint functions based on their values at the
initial point. Setting the option to ‘none’ disables scaling
If scaling is performed, all internal computations, including
the stopping tests, are based on the scaled values.

SubproblemAlgorithm algorithm Determines how the iteration step is calculated. The default
option is ‘ldl-factorization’, (in Knitro this is a symmetric,
indefinite factorization) which is usually faster than the alter-
native, ‘cg’ (conjugate gradient). Conjugate gradient may be
faster for large problems with dense Hessians.

TolCon feastol Termination tolerance on the constraint violation.
Default: 1.0e-6

TolFun opttol Termination tolerance on the function value.
Default: 1.0e-6

TolX xtol Termination tolerance on x.
Default: 1.0e-6

UseParallel Boolean indicating if parallel finite differences will be used.
It has no effect when exact gradients are used or if the Parallel
Computing Toolbox is not installed.
The Knitro option “par_numthreads” does not have an ef-
fect on parallel finite differences in MATLAB. The MAT-
LAB command “parpool(n)” will set the number of work-
ers to the minimum of n and the maximum number allowed,
which can be set in the cluster profile. If the parallel pool is
not started before knitromatlab is run, it will start one with
the default number of workers set by MATLAB, as long as
the Parallel Pool preferences allow automatically creating a
parallel pool.
Default: false

3.2.8 Output Function

The output function can be assigned with

extendedFeatures.OutputFcn = @outputfun;

or in the options structure with

options = optimset('OutputFcn',@outputfun);

where the function is defined as

function stop = outputfun(x,optimValues,state);

Only the value of stop can be set to true or false. Setting it to true will terminate Knitro.

The inputs to the function cannot be modified. The inputs include the current point x, the structure optimValues,
and the state. Since Knitro only calls the function after every iteration, the value of state will always be ‘iter’. The
optimValues structure contains the following fields:

3.2. Knitro / MATLAB reference 149



Artelys Knitro Documentation, Release 11.0.0

3.2.9 optimValues Fields

optimValues
Field

Description

lambda Structure containing the Lagrange multipliers at the solution with a different field for each
constraint type.

fval The objective value at x.
c The nonlinear inequality constraint values at x.
ceq The nonlinear equality constraint values at x.
gradient The gradient vector at x.
cineqjac The nonlinear inequality constraint Jacobian matrix.
ceqjac The nonlinear equality constraint Jacobian matrix.

Note that setting newpoint to any value other than 3 in the Knitro options file will take precedence over OutputFcn.
Note that the nonlinear constraint Jacobian matrices are given with the variables as the rows and constraints as the
columns, the transpose of JacobPattern.

3.2.10 Sparsity Pattern for Nonlinear Constraints

The sparsity pattern for the constraint Jacobian is a matrix, which is passed as the JacobPattern option. JacobPattern
is only for the nonlinear constraints, with one row for each constraint. The nonlinear inequalities, in order, make up
the first rows, and the nonlinear equalities, in order, are in the rows after that. Gradients for linear constraints are not
included in this matrix, since the sparsity pattern is known from the linear coefficient matrices.

All that matters for the matrix is whether the values are zero or not zero for each entry. A nonzero value indicates that
a value is expected from the gradient function. A MATLAB sparse matrix may be used, which may be more efficient
for large sparse matrices of constraints.

The gradients of the constraints returned by the nonlinear constraint function and those used in the newpoint function
have the transpose of the Jacobian pattern, i.e., JacobPattern has a row for each nonlinear constraint and a column
for each variable, while the gradient matrices (one for inequalities and one for equalities) have a column for each
constraint and a row for each variable.

3.2.11 Hessians

The Hessian is the matrix of the second derivative of the Lagrangian, as in

http://www.mathworks.com/help/optim/ug/fmincon.html#brh002z

The matrix H can be given as a full or sparse matrix of the upper triangular or whole matrix pattern.

If HessMult is used, then the Hessian-vector-product of the Hessian and a vector supplied by Knitro at that iteration is
returned.

3.2.12 Backwards Compatibility

The ktrlink interface previously provided by the MATLAB Optimization Toolbox function is no longer supported. The
interface function knitrolink can be used in its place with the same function signature, but it has the same effect as
using knitromatlab with an empty matrix as the extendedFeatures argument. Users are encouraged to use knitromatlab,
since knitrolink may be removed from future versions.

150 Chapter 3. Reference manual

http://www.mathworks.com/help/optim/ug/fmincon.html#brh002z


Artelys Knitro Documentation, Release 11.0.0

3.2.13 Nonlinear Least Squares

There is a special function, knitromatlab_lsqnonlin, for using Knitro to solve nonlinear least squares problems. It
behaves similarly to the lsqnonlin function in the MATLAB Optimization Toolbox. Note that the extendedFeatures
structure is not an input argument of lsqnonlin, but is the argument before options in knitromatlab_lsqnonlin. If the
structure is not used, an empty matrix, [], should be used in its place.

The most elaborate form is:

[x,resnorm,residual,exitflag,output,lambda,jacobian] = ...
knitromatlab_lsqnonlin(fun,x0,lb,ub,extendedFeatures,options,knitroOpts)

but the simplest function call reduces to:

x = knitromatlab_lsqnonlin(fun,x0)

3.2.14 Input Arguments for knitromatlab_lsqnonlin

Input Argument Description
fun The function whose sum of squares is minimized.

fun accepts a vector x and returns a vector F, the values
of the functions evaluated at x.
If exact gradients are used, an additional matrix should
be returned with the Jacobian for the function at x. Un-
like the user-supplied Jacobian for knitromatlab, the en-
tries J(i,j) of the Jacobian for knitromatlab_lsqnonlin
represent the partial derivative of the function compo-
nent i with respect to variable j.

x0 The initial point vector.
lb Variable lower bound vector.
ub Variable upper bound vector.
extendedFeatures The structure used to define other, extended modeling

features of Knitro.
It is similar to the extendedFeatures input to knitromat-
lab, but currently it is only used for the JacobPattern
(rows are the function components and columns are the
variables) and OutputFcn fields.

options The options structure set with optimset. See details be-
low.

knitroOpts The text file with Knitro options.

The options available in the options structure are the same as those available in knitromatlab, except the differences
noted here.

• GradConstr, HessFcn, Hessian, HessMult, and HessPattern are not available.

• JacobPattern is the Jacobian for the function, where rows are the function components and columns are the
variables.

• OutputFcn inputs refer to the transformed problem, but x still refers to the current point.

• Algorithm may be set to ‘interior-point’ (default) to use the Gauss-Newton method, or ‘levenberg-marquardt’
to use the Levenberg-Marquardt method.

knitromatlab_lsqnonlin does not use Hessian information or options provided by the user, but uses the approximation
shown in Least squares problems.

3.2. Knitro / MATLAB reference 151



Artelys Knitro Documentation, Release 11.0.0

3.2.15 Nonlinear System of Equations

There is another special function, knitromatlab_fsolve, for using Knitro to solve nonlinear systems of equations. It
behaves similarly to the fsolve function in the MATLAB Optimization Toolbox. Note that the extendedFeatures struc-
ture is not an input argument of fsolve, but is the argument before options in knitromatlab_fsolve. If the structure is
not used, an empty matrix, [], should be used in its place.

The most elaborate form is:

[x,fval,exitflag,output,jacobian] = ...
knitromatlab_fsolve(fun,x0,extendedFeatures,options,knitroOpts)

but the simplest function call reduces to:

x = knitromatlab_fsolve(fun,x0)

3.2.16 Input Arguments for knitromatlab_fsolve

Input Argument Description
fun The function whose components are to be solved to

equal zero.
fun accepts a vector x and returns a vector F, the values
of the functions evaluated at x.
If exact gradients are used, an additional matrix should
be returned with the Jacobian for the function at x. Un-
like the user-supplied Jacobian for knitromatlab, the en-
tries J(i,j) of the Jacobian for knitromatlab_fsolve rep-
resent the partial derivative of the function component i
with respect to variable j.

x0 The initial point vector.
extendedFeatures The structure used to define other, extended modeling

features of Knitro.
It is similar to the extendedFeatures input to knitromat-
lab, but currently it is only used for the JacobPattern
(rows are the function components and columns are the
variables) and OutputFcn fields.

options The options structure set with optimset. See details be-
low.

knitroOpts The text file with Knitro options.

The options available in the options structure are the same as those available in knitromatlab, except the differences
noted here.

• GradObj, HessFcn, HessMult, and HessPattern are not available. Hessian is available, except when using the
‘levenberg-marquardt’ algorithm option, but may only be set to ‘bfgs’ (default), ‘lbfgs’, or ‘fin-diff-grads‘.

• JacobPattern is the Jacobian for the function, where rows are the function components and columns are the
variables.

• OutputFcn inputs refer to the transformed problem, but x still refers to the current point.

• In addition to the four standard Knitro algorithm options, Algorithm may also be set to ‘trust-region-dogleg’
(default), or ‘levenberg-marquardt’. Using ‘trust-region-dogleg’ is equivalent to using ‘interior-point’ with
‘SubproblemMethod’ set to ‘cg’ (Knitro algorithm 2). Using ‘levenberg-marquardt’ is equivalent to using kni-
tromatlab_lsqnonlin.

152 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

3.2.17 Note on exit flags

The returned exit flags will correspond with Knitro’s return code, rather than matching fmincon‘s exit flags.

3.2.18 Return codes

Upon completion, Knitro displays a message and returns an exit code to MATLAB. In the example above Knitro found
a solution, so the message was:

Locally optimal solution found

with the return value of exitflag set to 0.

If a solution is not found, then Knitro returns one of the following:

Value Description
0 Locally optimal solution found.
-100 Current feasible solution estimate cannot be improved. Nearly optimal.
-101 Relative change in feasible solution estimate < xtol.
-102 Current feasible solution estimate cannot be improved.
-103 Relative change in feasible objective < ftol for ftol_iters.
-200 Convergence to an infeasible point. Problem may be locally infeasible.
-201 Relative change in infeasible solution estimate < xtol.
-202 Current infeasible solution estimate cannot be improved.
-203 Multistart: No primal feasible point found.
-204 Problem determined to be infeasible with respect to constraint bounds.
-205 Problem determined to be infeasible with respect to variable bounds.
-300 Problem appears to be unbounded.
-400 Iteration limit reached. Current point is feasible.
-401 Time limit reached. Current point is feasible.
-402 Function evaluation limit reached. Current point is feasible.
-403 MIP: All nodes have been explored. Integer feasible point found.
-404 MIP: Integer feasible point found.
-405 MIP: Subproblem solve limit reached. Integer feasible point found.
-406 MIP: Node limit reached. Integer feasible point found.
-410 Iteration limit reached. Current point is infeasible.
-411 Time limit reached. Current point is infeasible.
-412 Function evaluation limit reached. Current point is infeasible.
-413 MIP: All nodes have been explored. No integer feasible point found.
-415 MIP: Subproblem solve limit reached. No integer feasible point found.
-416 MIP: Node limit reached. No integer feasible point found.
-501 LP solver error.
-502 Evaluation error.
-503 Not enough memory.
-504 Terminated by user.
-505 to -522 Input or other API error.
-523 Derivative check failed.
-524 Derivative check finished.
-600 Internal Knitro error.

For more information on return codes, see Return codes.

3.2. Knitro / MATLAB reference 153



Artelys Knitro Documentation, Release 11.0.0

3.3 Knitro / R reference

Usage of KnitroR is described here.

3.3.1 What is KnitroR?

KnitroR is the interface used to call Knitro from the R environment (requires R 3.0 or later).

KnitroR offers several routines to call Knitro from R:

• knitro, which is an interface for the standard Knitro nonlinear optimizer

• knitrolsq, which solves bound constrained nonlinear least-squares problems in vectorial format, that is

min
𝑝

0.5 · ‖𝐹 (𝑋, 𝑝)− 𝑌 ‖22

𝑝𝐿 ≤ 𝑝 ≤ 𝑝𝑈 .

This type of fitting problems is ubiquitous in statistics and data analytics. This function is based on the internal
Knitro implementation of nonlinear least-squares.

• knitromip, which is tailored to solve mixed-integer nonlinear programs

• An important point when passing sparse matrices (jacobian of the nonlinear constraints or hessian of Lagrangian)
to Knitro is that indices of the sparse matrix vectors must start from 0.

3.3.2 Syntax

The most elaborate form for general nonlinear programs is

sol <- knitro(nvar=..., ncon=..., x0=...,
objective=..., gradient=..., constraints=...,
jacobian=..., jacIndexCons=..., jacIndexVars=...,
hessianLag=..., hessIndexRows=..., hessIndexCols=...,
xL=..., xU=..., cL=..., cU=...,
options=...)

but the simplest function calls reduce to:

sol <- knitro(objective=..., x0=...)
sol <- knitro(objective=..., xL=...)
sol <- knitro(objective=..., xU=...)
sol <- knitro(nvar=..., objective=...)

You must provide an objective function and the number of variables or a vector that is used to compute the number of
variables. All other parameters are optional. For instance any of the following other forms may be used (note that this
list is not exhaustive):

sol <- knitro(nvar=..., objective=...)
sol <- knitro(nvar=..., ncon=..., objective=..., constraints=...)
sol <- knitro(x0=..., objective=..., constraints=...)
sol <- knitro(x0=..., objective=..., gradient=..., constraints=...,

jacobian=..., jacIndexCons=..., jacIndexVars=...)
sol <- knitro(x0=..., objective=..., gradient=..., constraints=...,

jacobian=..., hessianLag=...)

154 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

sol <- knitro(x0=..., objective=..., gradient=..., constraints=...,
jacobian=..., jacBitMap=...)

sol <- knitro(x0=..., objective=..., gradient=..., constraints=...,
jacobian=..., jacIndexCons=..., jacIndexVars=...,
hessianLag=..., hessIndexRows=..., hessIndexCols=...)

sol <- knitro(x0=..., objective=..., gradient=..., constraints=...,
jacobian=..., jacBitMap=...,
hessianLag=..., hessBitMap=...)

sol <- knitro(x0=..., objective=..., xL=...)
sol <- knitro(x0=..., objective=..., xL=..., xU=...)
sol <- knitro(x0=..., objective=..., constraints=..., cL=...)
sol <- knitro(x0=..., objective=..., constraints=..., cU=...)
sol <- knitro(x0=..., objective=..., constraints=..., cL=..., cU=...)
sol <- knitro(x0=..., objective=..., xL=..., xU=..., constraints=...)
sol <- knitro(x0=..., objective=..., gradient=..., constraints=...,

jacobian=..., jacIndexCons=..., jacIndexVars=...,
hessianLag=..., hessIndexRows=..., hessIndexCols=..., options=...)

sol <- knitro(nvar=..., objective=..., options=...)

When the functions jacobian or hessianLag are provided but the corresponding sparsity vectors jacIndexCons, jacIn-
dexVars, jacBitMap, hessIndexRows, hessIndexCols or hessBitMap are not, KnitroR computes dense sparsity patterns
internally.

An API for MPECs is also available via the R function Knitro. It takes the following form :

sol <- knitro(nvar=..., ncon=..., x0=..., objective=..., gradient=..., constraints=...
→˓,

jacobian=..., jacIndexCons=..., jacIndexVars=...,
hessianLag=..., hessIndexRows=..., hessIndexCols=...,
xL=..., xU=..., cL=..., cU=...,
numCompConstraints=..., ccIdxList1=..., ccIdxList2=...,
options=...)

The API for bound constrained nonlinear least-squares problems has the following form :

sol <- knitrolsq(dimp=..., par0=..., dataFrameX=..., dataFrameY=...,
residual=..., jacobian=...,
parL=..., parU=...,
xScaleFactors=..., xScaleCenters=...,
objScaleFactor=....,
jacIndexRows=..., jacIndexCols=...,
options=..., optionsFile=...)

The API for mixed-integer NLPs is

sol <- knitromip(nvar=..., ncon=..., x0=...,
objective=..., gradient=..., constraints=...,
jacobian=..., jacIndexCons=..., jacIndexVars=...,
hessianLag=..., hessIndexRows=..., hessIndexCols=...,
xL=..., xU=..., cL=..., cU=...,
xType=..., cFnType=..., objfntype=...,
options=...)

The following other forms may be used:

sol <- knitromip(nvar=..., ncon=..., x0=...,
objective=..., gradient=..., constraints=...,
jacobian=..., jacBitMap=...,

3.3. Knitro / R reference 155



Artelys Knitro Documentation, Release 11.0.0

hessianLag=..., hessBitMap=...,
xL=..., xU=..., cL=..., cU=...,
xType=..., cFnType=..., objfntype=...,
options=...)

sol <- knitromip(nvar=..., ncon=..., x0=...,
objective=..., gradient=..., constraints=...,
jacobian=..., hessianLag=...,
xL=..., xU=..., cL=..., cU=...,
xType=..., cFnType=..., objfntype=...,
options=...)

3.3.3 Input Arguments of knitro

Below is a description of the input arguments of the knitro function of KnitroR.

156 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Input Argument Description
objective Objective function to be minimized or maximized.

objective accepts a vector x and returns a scalar f, the
objective function evaluated at x.

gradient Gradient of the objective function.
gradient accepts a vector x and returns a vector g (using
the R function c(...))

constraints Nonlinear constraints function.
constraints accepts a vector x and returns a vector c (us-
ing the R function c(...))

jacobian Jacobian of nonlinear constraints function, as a sparse
matrix.
jacobian accepts a vector x and returns a vector contain-
ing the nonzero elements of the jacobian. Via R function
c(...)

jacIndexCons Vector containing the row indices of the nonzero ele-
ments of the jacobian Via R function c(...)

jacIndexVars Vector containing the column indices of the nonzero el-
ements of the jacobian Via R function c(...)

jacBitMap Vector containing 1 or 0 depending on whether jacobian
element is non-zero or not. Vector elements are sup-
posed to be given in row major. Via R function c(...)

hessianLag Hessian of Lagrangian, as a sparse matrix. Vector of
nonzero elements, via R function c(...)

hessIndexRows Row indices of nonzero elements of hessian of La-
grangian. Via R function c(...)

hessIndexCols Column indices of nonzero elements of hessian of La-
grangian. Via R function c(...)

hessBitMap Vector containing 1 or 0 depending on whether hessian
element is non-zero or not. Vector elements are sup-
posed to be given in row major. Via R function c(...)

printPrimal User-defined function to print primal iterate after ev-
ery Knitro iteration. Activated by setting option new-
point=3.

printDual User-defined function to print dual iterate after ev-
ery Knitro iteration. Activated by setting option new-
point=3.

printObjective User-defined function to print objective after every Kni-
tro iteration. Activated by setting option newpoint=3.

printGradient User-defined function to display gradient after every
Knitro iteration. Activated by setting option new-
point=3.

printConstraints User-defined function to display constraints after ev-
ery Knitro iteration. Activated by setting option new-
point=3.

printJacobian User-defined function to display jacobian after every
Knitro iteration. Activated by setting option new-
point=3.

3.3. Knitro / R reference 157



Artelys Knitro Documentation, Release 11.0.0

xL Vector of lower bounds on variables.
xU Vector of upper bounds on variables.
cL Vector of lower bounds on constraints.
cU Vector of upper bounds on constraints.
xScaleFactors Vector of scaling factors on variables.
xScaleCenters Vector of scaling centers on variables.
cScaleFactors Vector of scaling factors on nonlinear constraints.
ccScaleFac-
tors

Vector of scaling factors on complementarity constraints.

objScaleFac-
tor

Scaling factor on objective function.

constraint-
Types

Constraint types (general, linear or quadratic).

options Options stored as an R list. They can also be set in a file named ktrOptions.opt via the field
optionsFile.

optionsFile Options file. The user can specify all basic KNITRO options via a file with extension .opt.

3.3.4 Input Arguments for MPECS in knitro

Below is a description of the input arguments, which are specific to MPECs in the knitro function of KnitroR.

Input Argument Description
numCompConstraints Number of complementarity constraints among nonlinear constraints.
ccIdxList1 List of indices of first variables in complementarity constraints. Via R function c(...)
ccIdxList2 List of indices of second variables in complementarity constraints. Via R function c(...)

3.3.5 Input Arguments for knitromip

Below is a description of the input arguments, which are specific to MINLPs in the knitromip function of KnitroR.

Input Ar-
gument

Description

xType R vector indicating variable types: 0 (continuous), 1 (integer) or 2 (binary).
cFnType R vector indicating constraint types: 0 (convex), 1 (nonconvex) or 2 (uncertain)
objFn-
Type

Type of objective function: 0 (convex), 1 (nonconvex) or 2 (uncertain)

options List of options which are specific to MINLPs. xPriorities: branching priorities for integer variables
mipBranchRule: branching rule in Branch-and-Bound algorithm mipHeuristic: heuristic to find
initial integer feasible solution mipMethod: 0 (automatic choice), 1 (Branch-and-Bound), 2
(Quesada-Grossmann) mipLPalg: algorithm for LP subproblem.

3.3.6 Input Arguments for knitrolsq

Below is a descriptions of the API of the R function knitrolsq in KnitroR. The function knitrolsq is based on Knitro’s
internal implementation of bound-constrained nonlinear least-squares.

158 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Input Argument Description
dimp Dimension of fitting parameter.
par0 Initial guess on fitting parameter.
dataFrameX Data frame containing samples x_i.
dataFrameY Data frame containing samples y_i.
residual Vector of nonlinear least-squares residuals (R function returning c(...)).
jacobian Jacobian of nonlinear least-squares residuals residual (R function returning c(...)).
parL Vector of lower bounds on fitting parameter (R vector).
parU Vector of upper bounds on fitting parameter (R vector).
xScaleCenters Vector of scaling centers on fitting parameter. (R vector).
xScaleFactors Vector of scaling factors on fitting parameter. (R vector).
objScaleFactor Scaling factor on nonlienar least-squares objective function.

3.3.7 Output Arguments of knitro and knitromip

Output Argument Description
statusMessage Knitro’s status message.
x Locally optimal primal solution.
lambda Locally optimal dual solution.
objective Objective value at the optimal solution x.
constraints Constraints value at the optimal solution x.
objEval Number of objective evaluations.
gradEval Number of gradient evaluations.

3.3.8 Output Arguments of knitrolsq

Output Argument Description
statusMessage Knitro’s status message.
paramFit Locally optimal solution for fitting parameter.
objective Least-squares objective value at the optimal solution paramFit.
iter Number of iterations.
objEval Number of objective evaluations.
gradEval Number of gradient evaluations.

3.4 Object-oriented interface reference

3.4.1 What is the object-oriented interface?

The object-oriented interface provides the functionality of the callable library with an easy-to-use set of classes. The
interface is available in C++, C#, and Java. The problem definition is contained in a class definition and is simpler:
variable and constraint properties can be defined more compactly; memory for the problem characteristics does not
need to be allocated; and Knitro API functions are simplified with some of the arguments handled internally within
the classes.

This guide focuses on the C++ version of the interface.

Simple examples of the object-oriented interface can be found in User guide. More complex examples can be found
in the examples folder.

3.4. Object-oriented interface reference 159



Artelys Knitro Documentation, Release 11.0.0

3.4.2 Getting started with the Java object-oriented interface

Java interfaces are distributed as a JAR with additional packages containing Javadoc, sources and dependencies.

Java interfaces require using Java 6 or higher and Java Native Access library, which is also provided.

Import JAR files and dependencies within your project in order to enable using Knitro with Java interfaces.

Examples can be compiled and run from your favorite IDE or using the provided makefile.

3.4.3 Getting started with the C# object-oriented interface

C# interface requires .net 4.0 or higher.

A project is distributed as a Microsoft Visual Studio solution with all the sources and examples.

In order to run, the project only needs to have KNITRODIR environment variable set to the Knitro directory.

To modify the example run by Visual Studio, right click on “KTRC” project then select “Properties” and modify
“Startup object” (in Application tab).

3.4.4 Getting started with the C++ object-oriented interface

The C++ object oriented interface is distributed as a header library which is straightforward to include within your
projects.

Examples are provided within a CMake project. Please refer to the README file in examples/C++ directory for
more details.

The following sections and subsequent references to object-oriented interfaces within the documentation, use C++
interface methods and classes.

3.4.5 Defining a problem

This section describes how to define a problem in the object-oriented interface by implementing the abstract
KTRProblem class. The KTRProblem class inherits from the KTRIProblem class and defines several functions
that make implementing the problem easier. Users should consult KTRIProblem.h for more information on how to
implement the KTRIProblem class if the KTRProblem is not used.

Minimal required implementation

In order to define an optimization problem, a problem class that inherits from KTRProblem must be defined by the
user. A class should at least:

• pass the number of variables to the KTRProblem constructor.

• pass the number of constraints to the KTRProblem constructor.

• set variable upper and lower bounds with KTRProblem::setVarLoBnds() and
KTRProblem::setVarUpBnds()

• set constraint upper and lower bounds with KTRProblem::setConLoBnds() and
KTRProblem::setConUpBnds()

• set constraint types with KTRProblem::setConTypes()

• set the objective type with KTRProblem::setObjType()

160 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

• set the objective goal with KTRProblem::setObjGoal()

It should also define evaluation functions; at minimum

• define the function double KTRProblem::evaluateFC(), evaluating the objective function and con-
straints, setting the constraint values in the function parameter std::vector<double> c and returning the
objective function value.

If possible, the user should also

• pass the number of non-zero elements of the Jacobian to the KTRProblem constructor

• set the Jacobian sparsity pattern with KTRProblem::setJacIndexCons() and
KTRProblem::setJacIndexVars().

If these are not known, a dense pattern will automatically be set, but a sparsity pattern can help solver performance
significantly regardless of whether exact first derivatives are implemented or not.

The functions KTRProblem::setXInitial() and KTRProblem::setLambdaInitial() can respec-
tively be used to set values for the initial primal and dual variable values. If these values are not set, Knitro will
automatically determine initial values.

Implementing a MIP problem

If the problem has integer or binary variables, the following must also be defined:

• set variable types with KTRProblem::setVarTypes()

• set constraint function types with KTRProblem::setConFnTypes()

• set the objective function type with KTRProblem::setObjFnType()

Implementing derivatives

Like the callable library, the object-oriented interface does not compute derivatives automatically.

To evaluate first derivatives exactly, the problem class should define double KTRProblem::evaluateGA(),
evaluating the gradient and Jacobian and setting their values in the function parameters std::vector<double>
objGrad and std::vector<double> jac. The function should return 0 to indicate that no error occurred, or
KTR_RC_CALLBACK_ERR can be returned; this return code will stop the Knitro solver.

To evaluate second derivatives exactly, the problem class should:

• pass the number of non-zero elements of the Hessian to the KTRProblem constructor

• define the Hessian sparsity pattern with KTRProblem::setHessIndexCols() and
KTRProblem::setHessIndexRows().

The problem class should define the function int KTRProblem::evaluateHess() to set the value of
the Hessian in the parameter hess. The function should return 0 to indicate that no error or occurred.
KTR_RC_CALLBACK_ERR can be returned; this return code will stop the Knitro solver.

To evaluate the Hessian-vector product, the problem class should define the function int
KTRProblem::evaluateHessianVector() to set the value of the Hessian-vector product in the pa-
rameter vector. The function should return 0 to indicate that no error occurred, or KTR_RC_CALLBACK_ERR
can be returned; this return code will stop the Knitro solver.

3.4. Object-oriented interface reference 161



Artelys Knitro Documentation, Release 11.0.0

Complementarity Constraints

Complementarity constraints can be specified in the object-oriented interface by passing the lists of complementary
variables to the function:

KTRIProblem::setComplementarity(const std::vector<int>& indexList1,
const std::vector<int>& indexList2)

3.4.6 Using the KTRSolver class to solve a problem

Once a problem is defined by inheriting from KTRIProblem or KTRProblem, the KTRSolver class is used to
call Knitro to solve the problem. This class is also used to set most Knitro parameters, and access solution information
after Knitro has completed solving the problem.

To use the KTRSolver class, one of four constructors can be used. Each of the constructors takes at least a pointer to
a KTRIProblem object (each KTRSolver object is associated with one problem definition. If different problems
are to be solved, multiple KTRSolver objects are needed).

explicit KTRSolver(KTRIProblem * problem);

This constructor should be used when using exact gradient and Hessian evaluation, which must be defined in the
KTRIProblem object.

KTRSolver(KTRIProblem * problem, int gradopt, int hessopt);

This constructor should be used when specifying a gradient and Hessian evaluation other than the default exact gradient
and Hessian evaluations.

For both of these constructors, a pointer to a ZLM object can also be passed as an additional argument, when using a
network license of Knitro with the Artelys License Manager. Otherwise, a local Knitro license is used.

Once the solver object is created, Knitro options can be set with KTRSolver::setParam(), or by loading a
parameters file with KTRSolver::loadParamFile(). Finally, the function KTRSolver::solve() will call
Knitro to solve the problem and will return a solution status code.

KTRSolver::solve() can be called multiple times. Between each call to solve(), two types of changes can
be made:

• KTRSolver::setParam() can be used to change problem parameters, except for the gradient and Hessian
evaluation types.

• Variable bounds can be changed by calling KTRIProblem::setVarLoBnds() and
KTRIProblem::setVarUpBnds() in the problem object that the solver object points to.

3.4.7 Accessing callable library functions from the object-oriented interface

The object-oriented interface provides access to the Knitro callable library functions. The table below shows the cor-
respondence between callable library functions and object-oriented interface functions. Note that in the C# interface,
function names are capitalized keeping with C# convention.

The majority of the functions are accessed directly through KTRSolvermethods, or in the case of the callback setting
functions, KTRIProblem methods. There are a few major differences between the callable library functions and the
object-oriented interface methods:

• The callable library methods take a KTR_context_ptr argument (created from a call to KTR_new()),
which holds problem information. The object-oriented interface methods do not take this argument, storing the
necessary information in the KTRSolver object.

162 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

• The callable library methods return status codes, with a non-zero status code usually indicating an error. The
object-oriented interface methods (with the exception of KTRSolver::solve()) do not return status codes.
If the methods encounter an error, usually related to an invalid Knitro license or invalid function arguments, a
KTRException is thrown.

• Several callable library methods, such as KTR_get_constraint_values(), modify input parameters.
Instead, the object-oriented interface methods return these values as output parameters (rather than returning
status codes).

• Function arguments use std::vector<> (C++), IList<> (Java), or List<> (C#) instead of C-style
(pointer) arrays. Instead of character arrays, functions use std::string (C++), or String (Java and C#).

Callable Library Function Object-Oriented Interface Methods
KTR_new() Not necessary - problem information stored in KTRSolver

object.
KTR_new_puts() Not necessary - redirect output by inheriting from KTRPuts

class.
KTR_free() Not necessary - problem information stored in KTRSolver

object.
KTR_reset_params_to_defaults() KTRSolver::resetParamsToDefaults()
KTR_load_param_file() KTRSolver::loadParamFile()
KTR_save_param_file() KTRSolver::saveParamFile()
KTR_set_int_param_by_name() KTRSolver::setParam()
KTR_set_char_param_by_name() KTRSolver::setParam()
KTR_set_double_param_by_name() KTRSolver::setParam()
KTR_set_int_param() KTRSolver::setParam()
KTR_set_char_param() KTRSolver::setParam()
KTR_set_double_param() KTRSolver::setParam()
KTR_get_int_param_by_name() KTRSolver::getIntParam()
KTR_get_double_param_by_name() KTRSolver::getDoubleParam()
KTR_get_int_param() KTRSolver::getIntParam()
KTR_get_double_param() KTRSolver::getDoubleParam()
KTR_get_param_name() KTRSolver::getParamName()
KTR_get_param_doc() KTRSolver::getParamDoc()
KTR_get_param_type() KTRSolver::getParamType()
KTR_get_num_param_values() KTRSolver::getNumParamValues()
KTR_get_param_value_doc() KTRSolver::getParamValueDoc()
KTR_get_param_id() KTRSolver::getParamID()
KTR_get_release() KTRSolver::getRelease()
KTR_load_tuner_file() KTRSolver::loadTunerFile()
KTR_set_feastols() KTRSolver::setFeastols()
KTR_set_names() KTRSolver::setNames()
KTR_set_compcons() Not necessary - define complementarity constraints in the

KTRIProblem class constructor.
KTR_chgvarbnds() Not necessary - change variable bounds in a KTRIProblem

object.
KTR_init_problem() Not necessary - problem initialized in KTRSolver construc-

tor.
KTR_solve() KTRSolver::solve()
KTR_restart() KTRSolver::restart()
KTR_mip_init_problem() Not necessary - problem initialized in KTRSolver construc-

tor.
KTR_mip_set_branching_priorities()KTRSolver::mipSetBranchingPriorities()

Continued on next page

3.4. Object-oriented interface reference 163



Artelys Knitro Documentation, Release 11.0.0

Table 3.3 – continued from previous page
Callable Library Function Object-Oriented Interface Methods
KTR_mip_solve() KTRSolver::solve()
KTR_set_findiff_relstepsizes() KTRSolver::setFindiffRelstepsizes()
KTR_set_func_callback() Not necessary - define function evaluation in class that inher-

its from KTRIProblem()
KTR_set_grad_callback() Not necessary - define gradient evaluation in class that inher-

its from KTRIProblem()
KTR_set_hess_callback() Not necessary - define Hessian evaluation in class that inher-

its from KTRIProblem()
KTR_set_newpt_callback() KTRIProblem::setNewPointCallback()
KTR_set_ms_process_callback() KTRIProblem::setMSProcessCallback()
KTR_set_mip_node_callback() KTRIProblem::setMipNodeCallback()
KTR_set_ms_initpt_callback() KTRIProblem::setMSInitptCallback()
KTR_set_puts_callback() KTRIProblem::setPutsCallback()
KTR_get_number_FC_evals() KTRSolver::getNumberFCEvals()
KTR_get_number_GA_evals() KTRSolver::getNumberGAEvals()
KTR_get_number_H_evals() KTRSolver::getNumberHEvals()
KTR_get_number_HV_evals() KTRSolver::getNumberHVEvals()
KTR_get_number_iters() KTRSolver::getNumberIters()
KTR_get_number_cg_iters() KTRSolver::getNumberCGIters()
KTR_get_abs_feas_error() KTRSolver::getAbsFeasError()
KTR_get_rel_feas_error() KTRSolver::getRelFeasError()
KTR_get_abs_opt_error() KTRSolver::getAbsOptError()
KTR_get_rel_opt_error() KTRSolver::getRelOptError()
KTR_get_solution() KTRSolver::getSolution()
KTR_get_constraint_values() KTRSolver::getConstraintValues()
KTR_get_objgrad_values() KTRSolver::getObjgradValues()
KTR_get_jacobian_values() KTRSolver::getJacobianValues()
KTR_get_hessian_values() KTRSolver::getHessianValues()
KTR_get_mip_num_nodes() KTRSolver::getMipNumNodes()
KTR_get_mip_num_solves() KTRSolver::getMipNumSolves()
KTR_get_mip_abs_gap() KTRSolver::getMipAbsGap()
KTR_get_mip_rel_gap() KTRSolver::getMipRelGap()
KTR_get_mip_incumbent_obj() KTRSolver::getMipIncumbentObj()
KTR_get_mip_relaxation_bnd() KTRSolver::getMipRelaxationBnd()
KTR_get_mip_lastnode_obj() KTRSolver::getMipLastnodeObj()
KTR_get_mip_incumbent_x() KTRSolver::getMipIncumbentX()
KTR_set_var_scaling() KTRSolver::setVarScaling()
KTR_set_con_scaling() KTRSolver::setConScaling()
KTR_set_obj_scaling() KTRSolver::setObjScaling()
KTR_set_int_var_strategy() KTRSolver::setIntVarStrategy()
No callable library equivalent KTRSolver::setIntegralityRelaxed()
double * obj set by KTR_solve() KTRSolver::getObj()
double * x set by KTR_solve() KTRSolver::getXValues()
double * lambda set by KTR_solve() KTRSolver::getLambdaValues()
KTR_check_first_ders() Deprecated - set derivative check options with KTR-

Solver::setParam().

164 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

3.4.8 Callbacks in the object-oriented interface

The object-oriented interface supports all of the callbacks that are supported by the callable library: MIP node call-
backs; multi-start initial point callbacks; multi-start process callbacks; new point callbacks, and Knitro output redirec-
tion callbacks.

Each of these callbacks can be implemented by extending the appropriate callback class, and passing the callback
object to a KTRProblem object via the function KTRProblem::set{Callbacktype} (for some callback type).

The callback functionality is the same as described in the callable library reference section.

Below, we show an example of implementing KTRNewptCallback. This type of callback is called by Knitro during
the problem iteration whenever Knitro finds a new estimate of the solution point (i.e., after each major iteration). This
callback cannot modify any of its arguments, but can provide information about the solve before it is completed. In
this example, the callback prints the number of objective function and constraint evaluations.

The following defines the callback, inheriting from KTRNewptCallback.

#include <iostream>
#include "KTRNewptCallback.h"
#include "KTRSolver.h"

class ExampleNewPointCallback : public knitro::KTRNewptCallback {
public:

int CallbackFunction(const std::vector<double>& x, const std::vector<double>&
→˓lambda,

double obj,
const std::vector<double>& c, const std::vector<double>&

→˓objGrad,
const std::vector<double>& jac,
knitro::KTRSolver * solver)
{

int n = x.size();
std::cout << ">> New point computed by Knitro: (";
for (int i = 0; i < n - 1; i++) {

std::cout << x[i] << ", ";
}

std::cout << x[n - 1] << std::endl;

std::cout << "Number FC evals= " << solver->getNumberFCEvals() << std::endl;
std::cout << "Current feasError= " << solver->getAbsFeasError() << std::endl;

return 0;
}

};

To use this callback, it should be passed to the KTRProblem object, before passing it to the KTRSolver constructor.
This is shown below. The problem solved is the same example problem solved in previous sections, but the callback
defined above is independent of the problem solved.

#include "KTRSolver.h"
#include "ProblemQCQP.h"
#include "ExampleNewPointCallback.h"
#include "ExampleHelpers.h"

int main() {
// Create a problem instance.

3.4. Object-oriented interface reference 165



Artelys Knitro Documentation, Release 11.0.0

ProblemQCQP instance;

ExampleNewPointCallback callback;

instance.setNewPointCallback(&callback);

// Create a solver
knitro::KTRSolver solver(&instance, KTR_GRADOPT_FORWARD, KTR_HESSOPT_BFGS);
solver.useNewptCallback();

int solveStatus = solver.solve();

printSolutionResults(solver, solveStatus);

return 0;
}

Calling this function gives the following output, showing additional information each time Knitro finds a new estimate
of the solution value:

=======================================
Commercial License

Artelys Knitro 10.1.0
=======================================

Knitro performing finite-difference gradient computation with 1 thread.
Knitro presolve eliminated 0 variables and 0 constraints.

gradopt: 2
hessopt: 2
newpoint: 3
The problem is identified as a QCQP.
Knitro changing algorithm from AUTO to 1.
Knitro changing bar_initpt from AUTO to 3.
Knitro changing bar_murule from AUTO to 4.
Knitro changing bar_penaltycons from AUTO to 1.
Knitro changing bar_penaltyrule from AUTO to 2.
Knitro changing bar_switchrule from AUTO to 2.
Knitro changing linsolver from AUTO to 2.
Knitro performing finite-difference gradient computation with 1 thread.

Problem Characteristics ( Presolved)
-----------------------
Objective goal: Minimize
Number of variables: 3 ( 3)

bounded below: 3 ( 3)
bounded above: 0 ( 0)
bounded below and above: 0 ( 0)
fixed: 0 ( 0)
free: 0 ( 0)

Number of constraints: 2 ( 2)
linear equalities: 1 ( 1)
nonlinear equalities: 0 ( 0)
linear inequalities: 0 ( 0)
nonlinear inequalities: 1 ( 1)
range: 0 ( 0)

Number of nonzeros in Jacobian: 6 ( 6)
Number of nonzeros in Hessian: 6 ( 6)

166 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Iter Objective FeasError OptError ||Step|| CGits
-------- -------------- ---------- ---------- ---------- -------

0 9.760000e+02 1.300e+01
>> New point computed by Knitro: (3.8794, 0.01, 3.69211
Number FC evals= 12
Current feasError= 1.01993
>> New point computed by Knitro: (3.86709, 5e-05, 3.71871
Number FC evals= 16
Current feasError= 0.968364
>> New point computed by Knitro: (3.21473, 2.5e-07, 4.34569
Number FC evals= 20
Current feasError= 0.137681
>> New point computed by Knitro: (0.0160737, 7.84537e-08, 7.99343
Number FC evals= 24
Current feasError= 0.0826197
>> New point computed by Knitro: (8.03683e-05, 7.8344e-08, 8.01171
Number FC evals= 28
Current feasError= 0.08261
>> New point computed by Knitro: (4.01842e-07, 7.25596e-08, 8.01118
Number FC evals= 32
Current feasError= 0.078234
>> New point computed by Knitro: (2.00921e-09, 4.9857e-10, 8.00003
Number FC evals= 36
Current feasError= 0.000202022
>> New point computed by Knitro: (9.71398e-10, 3.11247e-10, 8
Number FC evals= 40
Current feasError= 6.53699e-13
>> New point computed by Knitro: (1.65208e-11, 5.31022e-12, 8
Number FC evals= 44
Current feasError= 7.10543e-15

9 9.360000e+02 7.105e-15 1.374e-07 1.976e-09 0

EXIT: Locally optimal solution found.

Final Statistics
----------------
Final objective value = 9.36000000000340e+02
Final feasibility error (abs / rel) = 7.11e-15 / 5.47e-16
Final optimality error (abs / rel) = 1.37e-07 / 8.59e-09
# of iterations = 9
# of CG iterations = 0
# of function evaluations = 44
# of gradient evaluations = 0
Total program time (secs) = 0.010 ( 0.016 CPU time)
Time spent in evaluations (secs) = 0.010

===============================================================================

Knitro successful, feasibility violation = 7.10543e-15
KKT optimality violation = 1.37375e-07

Below we give an example of how the KTRSolver::setIntVarStrategy() callback can be used to reformu-
late an MINLP.

#include "KTRSolver.h"
#include "ProblemMINLP.h"
#include "ExampleHelpers.h"

3.4. Object-oriented interface reference 167



Artelys Knitro Documentation, Release 11.0.0

/**
* An example of loading and solving a MINLP problem.

* Sets MIP parameters using parameter string names to choose the solution algorithm.

*/
int main() {

// Create a problem instance.
ProblemMINLP instance;

// Create a solver
knitro::KTRSolver solver(&instance);

solver.setParam("mip_method", KTR_MIP_METHOD_BB);
solver.setParam("algorithm", KTR_ALG_ACT_CG);
solver.setIntVarStrategy(4, KTR_MIP_INTVAR_STRATEGY_RELAX );
solver.setIntVarStrategy(5, KTR_MIP_INTVAR_STRATEGY_RELAX );

int solveStatus = solver.solve();

printSolutionResults(solver, solveStatus);

return 0;
}

These examples and examples of other callbacks can be found in the examples directory.

3.4.9 Changing variable bounds in the object-oriented interface

In both the object-oriented interface and the callable library, a problem can be solved multiple times, but the only
problem characteristics that can be changed between solves are the variable bounds. The object-oriented interface
differs from the callable library in how variable bounds are changed. In the object-oriented interface, variable bounds
are set in a KTRIProblem object. When KTRSolver::solve() is called to solve the problem, the variable
bounds in the KTRIProblem object are passed to the solver. the following example shows changing variable bounds
between calls to KTRSolver::solve.

// Create a problem instance.
ProblemQCQP instance;

// Create a solver
knitro::KTRSolver solver(&instance);

solver.solve();

// changing upper bounds makes previous optimal solution infeasible
instance.setVarUpBnds(7.0);

solver.solve();

In this example, the problem characteristics (including variable bounds) are initialized in the constructor of
ProblemQCQP. After the first call of KTRSolver::solve(), the variable bounds are changed in the problem
instance with the KTRIProblem::setVarUpBnds() function. This function sets all variable bounds to 7. When
solver.solve() is called for a second time, the solve function calls KTRIProblem::getVarLoBnds() and
KTRIProblem::getVarUpBnds() and updates them. Note that although other KTRIProblem functions can be
called after the KTRIProblem object is passed to the KTRSolver constructor, all changes except variable bounds
are ignored. In addition to variable bounds, Knitro parameters except for the gradient and Hessian evaluation type can
be changed between calls to solve.

168 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

3.4.10 Using the Artelys License Manager with the object-oriented interface

The object-oriented interface can be used with either a standalone Knitro license or a network Knitro license using the
Artelys License Manager (ALM) and a license server.

In order to use the ALM with the object-oriented interface, the license server needs to be installed and the user
machine (from which Knitro is run) should be configured to find the license server. For information on installing and
configuring the ALM, see the Artelys License Manager User’s Manual.

To use the ALM with the object-oriented interface, a ZLM object needs to be created and passed to a KTRSolver
object constructor. When the ZLM object is created, a network license will be checked out for use and unavailable for
other users until the ZLM object is destroyed.

An example usage is shown below. This example is identical to (and produces the same output as) the other examples
of the object-oriented interface, except for the instantiation of the ZLM object and the KTRSolver constructor that
takes a pointer to the ZLM object.

knitro::ZLM zlm;

// Create a problem instance.
ProblemQCQP instance = ProblemQCQP();

// Create a solver
knitro::KTRSolver solver(&zlm, &instance);

int solveStatus = solver.solve();

printSolutionResults(solver, solveStatus);

3.5 Callable library API reference

The various objects offered by the callable library API are listed here. The file knitro.h is also a good source of
information, and the ultimate reference. In addition, the examples provided with the Knitro distribution highlight most
of the key features of the API and are a good starting point.

3.5.1 Introduction and Philosophy

Knitro 11.0 introduces a completely new callable library API. For information on the old Knitro API prior to this
release, please see Knitro 10.x and Earlier Callable Library API, and the header file ktr.h. The old API is still
supported for compatibility purposes. However, we recommend using the new API described in this section whenever
possible. The old API may be deprecated in the future. In addition, not all new features will be available through the
old API. In the new API, functions, types, defines, macros, etc. begin with KN_, whereas in the old API they begin
with KTR_.

The new callable library API for Knitro, introduced with version 11.0, is designed to provide you maximum flexibility
and ease-of-use in building a model. In addition, and just as importantly, it is designed to provide Knitro a great amount
of structural information about your model, so that Knitro can exploit special structures wherever possible to improve
performance. The API is designed so that you can build up a model in pieces based on what is most convenient for
you. This means not only allowing you to add constraints one at a time (or in several blocks), but also allowing you to
add special structures within constraints separately if desired.

The API is designed so that you can load constant, linear, quadratic, and conic structures as well as complementarity
constraints separately. This allows Knitro to mark these structure types internally and provide special care to different
structure types. For example, conic structures and complementarities are notoriously difficult if not handled specially.

3.5. Callable library API reference 169



Artelys Knitro Documentation, Release 11.0.0

In addition, the more structural information Knitro has, the more extensive presolve operations Knitro can perform to
try to simplify the model internally. For this reason we always recommend making use of the API functions to provide
as much fine-grained structural information as possible to Knitro. More general nonlinear structure must be handled
through callback evaluation routines.

Structures of the same type can be added in individual pieces, in groups, or all together. Likewise, general nonlinear
structures can all be handled by one callback object or broken up into separate callback objects if there are natural
groupings that you want to treat differently. For example, you may be able to provide a callback routine to evaluate
the exact analytic derivatives for some group of nonlinear constraints, while having Knitro approximate the derivatives
for another group of nonlinear constraints using finite-differences. Implementing such a scheme is possible in the new
API.

The overhead costs for loading your model by pieces should be trivial in most cases – even for large models. However,
if not, it is always possible – and most efficient – to load all the structures of one type together in one API function
call.

All functions offered by the Knitro callable library are described in detail below.

3.5.2 Index

Here is a summary of Knitro API functions grouped by functionality.

Creating and destroying solver objects

API function name Purpose
KN_new() Create a new Knitro solver object
KN_free() Free/destroy an existing Knitro solver object

Changing and reading solver parameters

API function name Purpose
KN_reset_params_to_defaults() Reset all user options to their default values
KN_load_param_file() Read user options from a Knitro options file
KN_load_tuner_file() Read user options and values to explore for Knitro-Tuner
KN_save_param_file() Write all current user options to a file
KN_set_int_param_by_name() Set integer valued option using its string name
KN_set_char_param_by_name() Set character valued option using its string name
KN_set_double_param_by_name() Set double valued option using its string name
KN_set_param_by_name() Set integer or doubled valued option using its string name
KN_set_int_param() Set integer valued option using its integer identifier
KN_set_char_param() Set character valued option using its integer identifier
KN_set_double_param() Set double valued option using its integer identifier
KN_get_int_param_by_name() Get integer valued option using its string name
KN_get_double_param_by_name() Get double valued option using its string name
KN_get_int_param() Get integer valued option using its integer identifier
KN_get_double_param() Get double valued option using its integer identifier
KN_get_param_name() Get string name associated with user option
KN_get_param_doc() Get documentation string associated with user option
KN_get_param_type() Get type (KN_PARAM_TYPE_*) associated with user option
KN_get_num_param_values() Get number of possible values associated with integer valued user

option
KN_get_param_value_doc() Get documentation string associated with user option value
KN_get_param_id() Get integer identifier associated with user option

Basic problem construction

170 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

API function name Purpose
KN_add_vars() Add new variables to a model
KN_add_cons() Add new constraints to a model
KN_add_rsds() Add new residuals to a least-squares model
KN_set_var_lobnds() Set lower bounds on variables
KN_set_var_upbnds() Set upper bounds on variables
KN_set_var_fxbnds() Set fixed bounds on variables
KN_set_var_types() Set variable types (e.g., continuous, integer, etc)
KN_set_var_properties() Set variable properties (e.g., linear)
KN_set_con_lobnds() Set lower bounds on constraints
KN_set_con_upbnds() Set upper bounds on constraints
KN_set_con_eqbnds() Set equality bounds on constraints
KN_set_con_properties() Set constraint properties (e.g., convex)
KN_set_obj_property() Set objective properties (e.g., convex)
KN_set_obj_goal() Specify minimize of maximize
KN_set_var_primal_init_values() Set initial values for primal variables
KN_set_var_dual_init_values() Set initial values for dual variables
KN_set_con_dual_init_values() Set initial values for constraint multipliers

Adding constant structure

API function name Purpose
KN_add_obj_constant() Add a constant to the objective
KN_add_con_constants() Add constants to the constraints
KN_add_rsd_constants() Add constants to the residuals for least-squares models

Adding linear structure

API function name Purpose
KN_add_obj_linear_struct() Add linear structure to the objective
KN_add_con_linear_struct() Add linear structure to the constraints
KN_add_rsd_linear_struct() Add linear structure to the residuals for least-squares models

Adding quadratic structure

API function name Purpose
KN_add_obj_quadratic_struct() Add quadratic structure to the objective
KN_add_con_quadratic_struct() Add quadratic structure to the constraints

Adding conic structure

API function name Purpose
KN_add_con_L2norm() Add L2norm structure used to define conic constraints

Adding complementarity constraints

API function name Purpose
KN_set_compcons() Set all complementarity constraints for a model

Adding evaluation callbacks

3.5. Callable library API reference 171



Artelys Knitro Documentation, Release 11.0.0

API function name Purpose
KN_add_eval_callback() Add a callback for nolinear evaluations
KN_add_eval_callback_all() Add a callback for nolinear evaluations of all functions
KN_add_eval_callback_one() Add a callback for nolinear evaluations of one function
KN_add_lsq_eval_callback() Add a callback for nolinear least-squares evaluations
KN_add_lsq_eval_callback_all()Add a callback for nolinear least-squares evaluations of all functions
KN_add_lsq_eval_callback_one()Add a callback for nolinear least-squares evaluations of one function
KN_set_cb_grad() Set callback for objective gradient and constraint Jacobian
KN_set_cb_hess() Set callback for Hessian of the Lagrangian matrix
KN_set_cb_rsd_jac() Set callback for least-squares residual Jacobian
KN_set_cb_user_params() Set a user parameters structure for evaluation callback
KN_set_cb_gradopt() Specify how to evaluate gradients in evaluation callback
KN_set_cb_relstepsizes() Specify finite-difference relative stepsizes
KN_get_cb_number_cons() Get the number of constraints evaluated through the callback
KN_get_cb_number_rsds() Get the number of residuals evaluated through the callback
KN_get_cb_objgrad_nnz() Get the number of non-zero objective gradient elements evaluated

through the callback
KN_get_cb_jacobian_nnz() Get the number of non-zero Jacobian elements evaluated through the

callback
KN_get_cb_rsd_jacobian_nnz()Get the number of non-zero residual Jacobian elements evaluated

through the callback
KN_get_cb_hessian_nnz() Get the number of non-zero Hessian elements evaluated through the

callback

Other user callbacks
API function name Purpose
KN_set_newpt_callback() Callback to perform some user-defined task after new solution

estimate
KN_set_mip_node_callback() Callback to perform some user-defined task after MIP node solve
KN_set_ms_process_callback() Callback to perform some user-defined task after multi-start solve
KN_set_ms_initpt_callback() Callback to specify custom initial points for multi-start
KN_set_puts_callback() Callback to specify custom handling of output

Other algorithmic/modeling features

API function name Purpose
KN_set_var_feastols() Set custom feasibility tolerances for variables
KN_set_con_feastols() Set custom feasibility tolerances for constraints
KN_set_compcon_feastols() Set custom feasibility tolerances for complementarity

constraints
KN_set_var_scalings() Set custom scalings for variables
KN_set_con_scalings() Set custom scalings for constraints
KN_set_compcon_scalings() Set custom scalings for complementarity constraints
KN_set_obj_scaling() Set a custom scaling for the objective
KN_set_var_names() Set names for variables
KN_set_con_names() Set names for constraints
KN_set_compcon_names() Set names for complementarity constraints
KN_set_obj_name() Set a name for the objective
KN_set_var_honorbnds() Enforce variables satisfy bounds throughout optimization
KN_set_mip_branching_priorities() Set branching priorities for integer variables
KN_set_mip_intvar_strategies() Set strategies for handling for integer variables

172 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Solving

API function name Purpose
KN_solve() Call Knitro to solve/optimize the current model

Reading model/solution properties

API function name Purpose
KN_get_release() Get Knitro release number
KN_get_number_vars() Get the number of variables in the model
KN_get_number_cons() Get the number of constraints in the model
KN_get_number_rsds() Get the number of residuals in the model
KN_get_number_FC_evals() Get the number of function evaluations during the solve
KN_get_number_GA_evals() Get the number of gradient evaluations during the solve
KN_get_number_H_evals() Get the number of Hessian evaluations during the solve
KN_get_number_HV_evals() Get the number of Hessian-vector product evaluations during the solve
KN_get_solution() Get the solution status, objective and variables
KN_get_obj_value() Get the value of the objective function
KN_get_obj_type() Get the objective function type (e.g. linear, quadratic, general, etc.)
KN_get_con_values() Get the value of the constraint functions
KN_get_con_types() Get the constraint function types (e.g. linear, quadratic, general, etc.)
KN_get_rsd_values() Get the value of the residual functions
KN_get_number_iters() Get the number of iterations (continuous models only)
KN_get_number_cg_iters() Get the number of conjugate gradient iterations (continuous models only)
KN_get_abs_feas_error() Get the absolute feasibility error (continuous models only)
KN_get_rel_feas_error() Get the relative feasibility error (continuous models only)
KN_get_abs_opt_error() Get the absolute optimality error (continuous models only)
KN_get_rel_opt_error() Get the relative optimality error (continuous models only)
KN_get_objgrad_values() Get the objective gradient values (continuous models only)
KN_get_objgrad_values_all() Get the objective gradient values in dense form (continuous models only)
KN_get_jacobian_values() Get the constraint Jacobian values (continuous models only)
KN_get_rsd_jacobian_values() Get the residual Jacobian values (continuous models only)
KN_get_hessian_values() Get the Hessian values (continuous models only)
KN_get_mip_number_nodes() Get the number of MIP nodes explored (MIP models only)
KN_get_mip_number_solves() Get the number of MIP subproblem solves (MIP models only)
KN_get_mip_abs_gap() Get the absolute integrality gap (MIP models only)
KN_get_mip_rel_gap() Get the relative integrality gap (MIP models only)
KN_get_mip_incumbent_obj() Get the objective value of the incumbent solution (MIP models only)
KN_get_mip_relaxation_bnd() Get the current relaxation bound (MIP models only)
KN_get_mip_lastnode_obj() Get the objective value from the most recently solved node (MIP models only)
KN_get_mip_incumbent_x() Get the MIP incumbent solution variables (MIP models only)

KN_get_release()

int KNITRO_API KN_get_release (const int length,
char * const release);

Copy the Knitro release name into release. This variable must be preallocated to have length elements, including
the string termination character. For compatibility with future releases, please allocate at least 15 characters. Returns
0 if OK, nonzero if error.

3.5. Callable library API reference 173



Artelys Knitro Documentation, Release 11.0.0

3.5.3 Creating and destroying solver objects

KN_new()

int KNITRO_API KN_new (KN_context_ptr * kc);

This function must be called first. It returns a pointer to an object (the Knitro “context pointer”) that is used in all
other calls. If you enable Knitro with the floating network license handler, then this call also checks out a license
and reserves it until KN_free() is called with the context pointer, or the program ends. The contents of the context
pointer should never be modified by a calling program. Returns 0 if OK, nonzero if error.

KN_free()

int KNITRO_API KN_free (KN_context_ptr * kc);

This function should be called last and will free the context pointer. The address of the context pointer is passed so
that Knitro can set it to NULL after freeing all memory. This prevents the application from mistakenly calling Knitro
functions after the context pointer has been freed. Returns 0 if OK, nonzero if error.

3.5.4 Changing and reading solver parameters

With the exception of the hessopt user option, all parameters can be changed between successive calls to
KN_solve().

Note: The hessopt user option cannnot be changed after calling KN_solve(). You must first call KN_free()
and then reload the model before changing hessopt and solving again.

All methods return 0 if OK, nonzero if there was an error. In most cases, parameter values are not validated until
KN_solve() is called.

KN_reset_params_to_defaults()

int KNITRO_API KN_reset_params_to_defaults (KN_context_ptr kc);

Reset all parameters to default values.

KN_load_param_file()

int KNITRO_API KN_load_param_file
(KN_context_ptr kc, const char * const filename);

Set all parameters specified in the given file.

KN_load_tuner_file()

int KNITRO_API KN_load_tuner_file
(KN_context_ptr kc, const char * const filename);

Similar to KN_load_param_file() but specifically allows user to specify a file of options (and option values) to
explore for the Knitro-Tuner (see The Knitro-Tuner).

KN_save_param_file()

int KNITRO_API KN_save_param_file
(KN_context_ptr kc, const char * const filename);

Write all current parameter values to a file.

174 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

KN_set_int_param_by_name()

int KNITRO_API KN_set_int_param_by_name
(KN_context_ptr kc, const char * const name, const int value);

Set an integer valued parameter using its string name.

KN_set_char_param_by_name()

int KNITRO_API KN_set_char_param_by_name
(KN_context_ptr kc, const char * const name, const char * const value);

Set a character valued parameter using its string name.

KN_set_double_param_by_name()

int KNITRO_API KN_set_double_param_by_name
(KN_context_ptr kc, const char * const name, const double value);

Set a double valued parameter using its string name.

KN_set_param_by_name()

int KNITRO_API KN_set_param_by_name
(KN_context_ptr kc, const char * const name, const double value);

Set an integer or double valued parameter using its string name.

KN_set_int_param()

int KNITRO_API KN_set_int_param
(KN_context_ptr kc, const int param_id, const int value);

Set an integer valued parameter using its integer identifier (see Knitro user options).

KN_set_char_param()

int KNITRO_API KN_set_char_param
(KN_context_ptr kc, const int param_id, const char * const value);

Set a character valued parameter using its integer identifier (see Knitro user options).

KN_set_double_param()

int KNITRO_API KN_set_double_param
(KN_context_ptr kc, const int param_id, const double value);

Set a double valued parameter using its integer identifier (see Knitro user options).

KN_get_int_param_by_name()

int KNITRO_API KN_get_int_param_by_name
(KN_context_ptr kc, const char * const name, int * const value);

Get an integer valued parameter using its string name.

KN_get_double_param_by_name()

int KNITRO_API KN_get_double_param_by_name
(KN_context_ptr kc, const char * const name, double * const value);

3.5. Callable library API reference 175



Artelys Knitro Documentation, Release 11.0.0

Get a double valued parameter using its string name.

KN_get_int_param()

int KNITRO_API KN_get_int_param
(KN_context_ptr kc, const int param_id, int * const value);

Get an integer valued parameter using its integer identifier (see Knitro user options).

KN_get_double_param()

int KNITRO_API KN_get_double_param
(KN_context_ptr kc, const int param_id, double * const value);

Get a double valued parameter using its integer identifier (see Knitro user options).

KN_get_param_name()

int KNITRO_API KN_get_param_name
( KN_context_ptr kc,
const int param_id,

char * const param_name,
const size_t output_size);

Sets the string param_name to the name of parameter indexed by integer identifier param_id (see Knitro user
options) and returns 0. Returns an error if param_id does not correspond to any parameter, or if the parameter
output_size (the size of char array param_name) is less than the size of the parameter’s description.

KN_get_param_doc()

int KNITRO_API KN_get_param_doc
( KN_context_ptr kc,
const int param_id,

char * const description,
const size_t output_size);

Sets the string description to the description of the parameter indexed by integer identifier param_id (see Knitro user
options) and its possible values and returns 0. Returns an error if param_id does not correspond to any parameter,
or if the parameter output_size (the size of char array description) is less than the size of the parameter’s
description.

KN_get_param_type()

int KNITRO_API KN_get_param_type
( KN_context_ptr kc,
const int param_id,

int * const param_type);

Sets the int * param_type to the type of the parameter indexed by integer identifier param_id (see Knitro
user options). Possible values are KN_PARAMTYPE_INT, KN_PARAMTYPE_FLOAT, KN_PARAMTYPE_STRING.
Returns an error if param_id does not correspond to any parameter.

KN_get_num_param_values()

int KNITRO_API KN_get_num_param_values
( KN_context_ptr kc,
const int param_id,

int * const num_param_values);

176 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Set the int * num_param_values to the number of possible parameter values for the parameter indexed by
integer identifier param_id and returns 0. If there is not a finite number of possible values, num_param_values
will be zero. Returns an error if param_id does not correspond to any parameter.

KN_get_param_value_doc()

int KNITRO_API KN_get_param_value_doc
( KN_context_ptr kc,
const int param_id,
const int value_id,

char * const param_value_string,
const size_t output_size);

Set string param_value_string to the description of the parameter value indexed by
[param_id][value_id]. Returns an error if param_id does not correspond to any parameter, or if
value_id is greater than the number of possible parameter values, or if there are not a finite number of possible
parameter values, or if the parameter output_size (the size of char array param_value_string) is less than
the size of the parameter’s description.

KN_get_param_id()

int KNITRO_API KN_get_param_id
( KN_context_ptr kc,
const char * const name,

int * const param_id);

Gets the integer value corresponding to the parameter name input and copies it into param_id input. Returns zero
if successful and an error code otherwise.

3.5.5 Basic problem construction

Problem structure is passed to Knitro using KN API functions. The problem is solved by calling KN_solve().
Applications must provide a means of evaluating the nonlinear objective, constraints, first derivatives, and (optionally)
second derivatives. (First derivatives are also optional, but highly recommended.)

The typical calling sequence is:

KN_new
KN_add_vars/KN_add_cons/KN_set_*bnds, etc. (problem setup)
KN_add_*_linear_struct/KN_add_*_quadratic_struct (add special structures)
KN_add_eval_callback (add callback for nonlinear evaluations if needed)
KN_set_cb_* (set properties for nonlinear evaluation callbacks)
KN_set_xxx_param (set any number of parameters/user options)
KN_solve
KN_free

As long as no structural changes are made to the model KN_solve() can called in succession to re-solve a model
after small changes. For example, user options (with the exception of hessopt), variable bounds, and constraint
bounds can be changed between calls to KN_solve(), without having to first call KN_free() and reload the
model from scratch. More extensive additions or changes to the model (such as adding linear structure, quadratic
structure, callbacks, etc) require freeing the existing Knitro solver object and rebuilding the model from scratch.

KN_add_vars()

int KNITRO_API KN_add_vars ( KN_context_ptr kc,
const KNINT nV,

KNINT * const indexVars);

3.5. Callable library API reference 177



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KN_add_var ( KN_context_ptr kc,
KNINT * const indexVar);

Add variables to the model. The parameter indexVars may be set to NULL. Otherwise, on return it holds the
global indices associated with the variables that were added (indices are typically allocated sequentially). Parameter
indexVars can then be passed into other API routines that operate on the set of variables added through a particular
call to KN_add_vars(). Returns 0 if OK, nonzero if error.

KN_add_cons()

int KNITRO_API KN_add_cons ( KN_context_ptr kc,
const KNINT nC,

KNINT * const indexCons);
int KNITRO_API KN_add_con ( KN_context_ptr kc,

KNINT * const indexCon);

Add constraints to the model. The parameter indexCons may be set to NULL. Otherwise, on return it holds the
global indices associated with the constraints that were added (indices are typically allocated sequentially). Parameter
indexCons can then be passed into other API routines that operate on the set of constraints added through a particular
call to KN_add_cons(). Returns 0 if OK, nonzero if error.

KN_add_rsds()

int KNITRO_API KN_add_rsds ( KN_context_ptr kc,
const KNINT nR,

KNINT * const indexRsds);
int KNITRO_API KN_add_rsd ( KN_context_ptr kc,

KNINT * const indexRsd);

Add residuals for least squares optimization. The parameter indexRsds may be set to NULL. Otherwise, on return
it holds the global indices associated with the residuals that were added (indices are typically allocated sequentially).
Parameter indexRsds can then be passed into other API routines that operate on the set of residuals added through
a particular call to KN_add_rsds(). Note that the current Knitro API does not support adding both constraints and
residuals. Returns 0 if OK, nonzero if error.

KN_set_var_lobnds()

int KNITRO_API KN_set_var_lobnds ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const double * const xLoBnds);

int KNITRO_API KN_set_var_lobnds_all ( KN_context_ptr kc,
const double * const xLoBnds);

int KNITRO_API KN_set_var_lobnd ( KN_context_ptr kc,
const KNINT indexVar,
const double xLoBnd);

Set lower bounds on variables – either in groups, all at once, or individually. If not set, variables are assumed to be
unbounded (e.g. lower bounds are assumed to be -KN_INFINITY). Returns 0 if OK, nonzero if error.

KN_set_var_upbnds()

int KNITRO_API KN_set_var_upbnds ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const double * const xUpBnds);

int KNITRO_API KN_set_var_upbnds_all ( KN_context_ptr kc,
const double * const xUpBnds);

178 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KN_set_var_upbnd ( KN_context_ptr kc,
const KNINT indexVar,
const double xUpBnd);

Set upper bounds on variables – either in groups, all at once, or individually. If not set, variables are assumed to be
unbounded (e.g. upper bounds are assumed to be KN_INFINITY). Returns 0 if OK, nonzero if error.

KN_set_var_fxbnds()

int KNITRO_API KN_set_var_fxbnds ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const double * const xFxBnds);

int KNITRO_API KN_set_var_fxbnds_all ( KN_context_ptr kc,
const double * const xFxBnds);

int KNITRO_API KN_set_var_fxbnd ( KN_context_ptr kc,
const KNINT indexVar,
const double xFxBnd);

Set fixed bounds on variables – either in groups, all at once, or individually. Adding a fixed bound creates a fixed
variable and is equivalent to adding identical lower and upper bounds on the same variable. If the Knitro presolver is
enabled, fixed variables will typically be presolved out of the model. If not set, variables are assumed to be unbounded
(e.g. lower bounds are assumed to be -KN_INFINITY and upper bounds are assumed to be KN_INFINITY).
Returns 0 if OK, nonzero if error.

KN_set_var_types()

int KNITRO_API KN_set_var_types ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const int * const xTypes);

int KNITRO_API KN_set_var_types_all ( KN_context_ptr kc,
const int * const xTypes);

int KNITRO_API KN_set_var_type ( KN_context_ptr kc,
const KNINT indexVar,
const int xType);

Set variable types (e.g. KN_VARTYPE_CONTINUOUS, KN_VARTYPE_BINARY, KN_VARTYPE_INTEGER). If not
set, variables are assumed to be continuous. Returns 0 if OK, nonzero if error.

KN_set_var_properties()

int KNITRO_API KN_set_var_properties ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const int * const xProperties);

int KNITRO_API KN_set_var_properties_all ( KN_context_ptr kc,
const int * const xProperties);

int KNITRO_API KN_set_var_property ( KN_context_ptr kc,
const KNINT indexVar,
const int xProperty);

Specify some properties of the variables. Currently this API routine is only used to mark variables as linear, but other
variable properties will be added in the future. Note: use bit-wise specification of the features:

bit value meaning
0 1 KN_VAR_LINEAR

default = 0 (variables are assumed to be nonlinear)

3.5. Callable library API reference 179



Artelys Knitro Documentation, Release 11.0.0

If a variable only appears linearly in the model, it can be very helpful to mark this by enabling bit 0. This information
can then be used by Knitro to perform more extensive preprocessing. If a variable appears nonlinearly in any constraint
or the objective (or if the user does not know) then it should not be marked as linear. Variables are assumed to be
nonlinear variables by default. Knitro makes a local copy of all inputs, so the application may free memory after the
call. Returns 0 if OK, nonzero if error.

KN_set_con_lobnds()

int KNITRO_API KN_set_con_lobnds ( KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,
const double * const cLoBnds);

int KNITRO_API KN_set_con_lobnds_all ( KN_context_ptr kc,
const double * const cLoBnds);

int KNITRO_API KN_set_con_lobnd ( KN_context_ptr kc,
const KNINT indexCon,
const double cLoBnd);

Set lower bounds on constraints – either in groups, all at once, or individually. If not set, constraints are assumed to be
unbounded (e.g. lower bounds are assumed to be -KN_INFINITY). Returns 0 if OK, nonzero if error.

KN_set_con_upbnds()

int KNITRO_API KN_set_con_upbnds ( KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,
const double * const cUpBnds);

int KNITRO_API KN_set_con_upbnds_all ( KN_context_ptr kc,
const double * const cUpBnds);

int KNITRO_API KN_set_con_upbnd ( KN_context_ptr kc,
const KNINT indexCon,
const double cUpBnd);

Set upper bounds on constraints – either in groups, all at once, or individually. If not set, constraints are assumed to
be unbounded (e.g. upper bounds are assumed to be KN_INFINITY). Returns 0 if OK, nonzero if error.

KN_set_con_eqbnds()

int KNITRO_API KN_set_con_eqbnds ( KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,
const double * const cEqBnds);

int KNITRO_API KN_set_con_eqbnds_all ( KN_context_ptr kc,
const double * const cEqBnds);

int KNITRO_API KN_set_con_eqbnd ( KN_context_ptr kc,
const KNINT indexCon,
const double cEqBnd);

Set equality bounds on constraints – either in groups, all at once, or individually. Adding an equality bound creates
an equality constraint and is equivalent to adding identical lower and upper bounds on the same constraint. If not set,
constraints are assumed to be unbounded (e.g. lower bounds are assumed to be -KN_INFINITY and upper bounds
are assumed to be KN_INFINITY). Returns 0 if OK, nonzero if error.

KN_set_con_properties()

int KNITRO_API KN_set_con_properties ( KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,
const int * const cProperties);

180 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KN_set_con_properties_all ( KN_context_ptr kc,
const int * const cProperties);

int KNITRO_API KN_set_con_property ( KN_context_ptr kc,
const KNINT indexCon,
const int cProperty);

Specify some properties of the constraint functions. Note: use bit-wise specification of the features:

bit value meaning
0 1 KN_CON_CONVEX
1 2 KN_CON_CONCAVE
2 4 KN_CON_CONTINUOUS
3 8 KN_CON_DIFFERENTIABLE
4 16 KN_CON_TWICE_DIFFERENTIABLE
5 32 KN_CON_NOISY
6 64 KN_CON_NONDETERMINISTIC

default = 28 (bits 2-4 enabled: e.g. continuous, differentiable, twice-differentiable)

KN_set_obj_property()

int KNITRO_API KN_set_obj_property ( KN_context_ptr kc,
const int objProperty);

Specify some properties of the objective function. Note: use bit-wise specification of the features:

bit value meaning
0 1 KN_OBJ_CONVEX
1 2 KN_OBJ_CONCAVE
2 4 KN_OBJ_CONTINUOUS
3 8 KN_OBJ_DIFFERENTIABLE
4 16 KN_OBJ_TWICE_DIFFERENTIABLE
5 32 KN_OBJ_NOISY
6 64 KN_OBJ_NONDETERMINISTIC

default = 28 (bits 2-4 enabled: e.g. continuous, differentiable, twice-differentiable)

KN_set_obj_goal()

int KNITRO_API KN_set_obj_goal ( KN_context_ptr kc,
const int objGoal);

Set the objective goal (KN_OBJGOAL_MINIMIZE or KN_OBJGOAL_MAXIMIZE). If not called, minimization as-
sumed by default. Returns 0 if OK, nonzero if error.

KN_set_var_primal_init_values()

int KNITRO_API KN_set_var_primal_init_values ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const double * const xInitVals);

int KNITRO_API KN_set_var_primal_init_values_all ( KN_context_ptr kc,
const double * const xInitVals);

int KNITRO_API KN_set_var_primal_init_value ( KN_context_ptr kc,
const KNINT indexVar,
const double xInitVal);

Set initial values for primal variables. If not set, variables may be initialized as 0 or initialized by Knitro based on
some initialization strategy (perhaps determined by a user option). Returns 0 if OK, nonzero if error.

3.5. Callable library API reference 181



Artelys Knitro Documentation, Release 11.0.0

KN_set_var_dual_init_values()

int KNITRO_API KN_set_var_dual_init_values ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const double * const lambdaInitVals);

int KNITRO_API KN_set_var_dual_init_values_all ( KN_context_ptr kc,
const double * const

→˓lambdaInitVals);
int KNITRO_API KN_set_var_dual_init_value ( KN_context_ptr kc,

const KNINT indexVar,
const double lambdaInitVal);

Set initial values for dual variables (i.e. the Lagrange multipliers corresponding to the potentially bounded variables).
If not set, dual variables may be initialized as 0 or initialized by Knitro based on some initialization strategy (perhaps
determined by a user option). Returns 0 if OK, nonzero if error.

KN_set_con_dual_init_values()

int KNITRO_API KN_set_con_dual_init_values ( KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,
const double * const lambdaInitVals);

int KNITRO_API KN_set_con_dual_init_values_all ( KN_context_ptr kc,
const double * const

→˓lambdaInitVals);
int KNITRO_API KN_set_con_dual_init_value ( KN_context_ptr kc,

const KNINT indexCon,
const double lambdaInitVal);

Set initial values for constraint dual variables (i.e. the Lagrange multipliers for the constraints). If not set, constraint
dual variables may be initialized as 0 or initialized by Knitro based on some initialization strategy (perhaps determined
by a user option). Returns 0 if OK, nonzero if error.

3.5.6 Adding constant structure

KN_add_obj_constant()

int KNITRO_API KN_add_obj_constant ( KN_context_ptr kc,
const double constant);

Add a constant to the objective function.

KN_add_con_constants()

int KNITRO_API KN_add_con_constants ( KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons, /* size

→˓= nC */
const double * const constants); /* size

→˓= nC */
int KNITRO_API KN_add_con_constants_all ( KN_context_ptr kc,

const double * const constants);
int KNITRO_API KN_add_con_constant ( KN_context_ptr kc,

const KNINT indexCon,
const double constant);

182 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Add constants to the body of constraint functions. Each component i of arrays indexCons and constants adds
a constant term constants[i] to the constraint c[indexCons[i]].

KN_add_rsd_constants()

int KNITRO_API KN_add_rsd_constants ( KN_context_ptr kc,
const KNINT nR,
const KNINT * const indexRsds, /* size

→˓= nR */
const double * const constants); /* size

→˓= nR */
int KNITRO_API KN_add_rsd_constants_all ( KN_context_ptr kc,

const double * const constants);
int KNITRO_API KN_add_rsd_constant ( KN_context_ptr kc,

const KNINT indexRsd,
const double constant);

Add constants to the body of residual functions. Each component i of arrays indexRsds and constants adds a
constant term constants[i] to the residual r[indexRsds[i]].

3.5.7 Adding linear structure

KN_add_obj_linear_struct()

int KNITRO_API KN_add_obj_linear_struct ( KN_context_ptr kc,
const KNINT nnz,
const KNINT * const indexVars, /* size

→˓= nnz */
const double * const coefs); /* size

→˓= nnz */

Add linear structure to the objective function. Each component i of arrays indexVars and coefs adds a linear
term coefs[i]*x[indexVars[i]] to the objective.

KN_add_con_linear_struct()

int KNITRO_API KN_add_con_linear_struct ( KN_context_ptr kc,
const KNLONG nnz,
const KNINT * const indexCons, /*

→˓size = nnz */
const KNINT * const indexVars, /*

→˓size = nnz */
const double * const coefs); /*

→˓size = nnz */
int KNITRO_API KN_add_con_linear_struct_one ( KN_context_ptr kc,

const KNLONG nnz,
const KNINT indexCon,
const KNINT * const indexVars, /*

→˓size = nnz */
const double * const coefs); /*

→˓size = nnz */

Add linear structure to the constraint functions. Each component i of arrays indexCons, indexVars and coefs
adds a linear term coefs[i]*x[indexVars[i]] to constraint c[indexCons[i]].

Use KN_add_con_linear_struct() to add linear structure for a group of constraints at once, and
KN_add_con_linear_struct_one() to add linear structure for just one constraint.

3.5. Callable library API reference 183



Artelys Knitro Documentation, Release 11.0.0

KN_add_rsd_linear_struct()

int KNITRO_API KN_add_rsd_linear_struct ( KN_context_ptr kc,
const KNLONG nnz,
const KNINT * const indexRsds, /*

→˓size = nnz */
const KNINT * const indexVars, /*

→˓size = nnz */
const double * const coefs); /*

→˓size = nnz */
int KNITRO_API KN_add_rsd_linear_struct_one ( KN_context_ptr kc,

const KNLONG nnz,
const KNINT indexRsd,
const KNINT * const indexVar, /*

→˓size = nnz */
const double * const coefs); /*

→˓size = nnz */

Add linear structure to the residual functions. Each component i of arrays indexRsds, indexVars and coefs
adds a linear term coefs[i]*x[indexVars[i]] to residual r[indexRsds[i]].

Use KN_add_rsd_linear_struct() to add linear structure for a group of residuals at once, and
KN_add_rsd_linear_struct_one() to add linear structure for just one residual.

3.5.8 Adding quadratic structure

KN_add_obj_quadratic_struct()

int KNITRO_API KN_add_obj_quadratic_struct ( KN_context_ptr kc,
const KNLONG nnz,
const KNINT * const indexVars1, /*

→˓size = nnz */
const KNINT * const indexVars2, /*

→˓size = nnz */
const double * const coefs); /*

→˓size = nnz */

Add quadratic structure to the objective function. Each component i of arrays indexVars1, indexVars2 and
coefs adds a quadratic term coefs[i]*x[indexVars1[i]]*x[indexVars2[i]] to the objective.

Note: if indexVars2[i] is < 0 then it adds a linear term coefs[i]*x[indexVars1[i]] instead.

KN_add_con_quadratic_struct()

int KNITRO_API KN_add_con_quadratic_struct ( KN_context_ptr kc,
const KNLONG nnz,
const KNINT * const indexCons, /*

→˓size = nnz */
const KNINT * const indexVars1, /*

→˓size = nnz */
const KNINT * const indexVars2, /*

→˓size = nnz */
const double * const coefs); /*

→˓size = nnz */
int KNITRO_API KN_add_con_quadratic_struct_one ( KN_context_ptr kc,

const KNLONG nnz,
const KNINT indexCon,
const KNINT * const indexVars1, /

→˓* size = nnz */

184 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

const KNINT * const indexVars2, /
→˓* size = nnz */

const double * const coefs); /
→˓* size = nnz */

Add quadratic structure to the constraint functions. Each component i of arrays indexCons, indexVars1,
indexVars2 and coefs adds a quadratic term coefs[i]*x[indexVars1[i]]*x[indexVars2[i]] to
the constraint c[indexCons[i]].

Use KN_add_con_quadratic_struct() to add quadratic structure for a group of constraints at once, and
KN_add_con_quadratic_struct_one() to add quadratic structure for just one constraint.

Note: if indexVars2[i] is < 0 then it adds a linear term coefs[i]*x[indexVars1[i]] instead.

3.5.9 Adding conic structure

KN_add_con_L2norm()

int KNITRO_API KN_add_con_L2norm ( KN_context_ptr kc,
const KNINT indexCon,
const KNINT nCoords,
const KNLONG nnz,
const KNINT * const indexCoords, /* size = nnz

→˓*/
const KNINT * const indexVars, /* size = nnz

→˓*/
const double * const coefs, /* size = nnz

→˓*/
const double * const constants); /* size =

→˓nCoords or NULL */

Add L2 norm structure of the form ||Ax + b||_2 to a constraint.

Parameter Description
indexCon: The constraint index that the L2 norm term will be added to.
nCoords: The number of rows in “A” (or dimension of “b”)
nnz: The number of sparse non-zero elements in “A”
indexCoords: The coordinate (row) index for each non-zero element in “A”.
indexVars: The variable (column) index for each non-zero element in “A”
coefs: The coefficient value for each non-zero element in “A”
constants: The array “b” - may be set to NULL to ignore “b”

Note: L2 norm structure can currently only be added to constraints that otherwise only have linear (or constant)
structure. In this way they can be used to define conic constraints of the form ||Ax + b|| <= c'x + d. The c
coefficients should be added through KN_add_con_linear_struct() and d can be set as a constraint bound or
through KN_add_con_constants().

Note: Models with L2 norm structure are currently only handled by the Interior/Direct (KN_ALG_BAR_DIRECT)
algorithm in Knitro. Any model with structure defined with KN_add_L2norm() will automatically be forced to use
this algorithm.

3.5.10 Adding complementarity constraints

KN_set_compcons()

3.5. Callable library API reference 185



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KN_set_compcons ( KN_context_ptr kc,
const KNINT nCC,
const int * const ccTypes,
const KNINT * const indexComps1,
const KNINT * const indexComps2);

This function adds complementarity constraints to the problem. The two lists are of equal length, and contain matching
pairs of variable indices. Each pair defines a complementarity constraint between the two variables. The function can
only be called once. The array ccTypes specifies the type of complementarity:

KN_CCTYPE_VARVAR: two (non-negative) variables
KN_CCTYPE_VARCON: a variable and a constraint
KN_CCTYPE_CONCON: two constraints

Note: Currently only KN_CCTYPE_VARVAR is supported. The other ccTypes will be added in future releases.
Returns 0 if OK, or a negative value on error.

3.5.11 Defining evaluation callbacks

Applications may define functions for evaluating problem elements at a trial point. The functions must match the
prototype defined below, and passed to Knitro with the appropriate KN_set_cb_* call. Knitro may request different
types of evaluation information, as specified in evalRequest.type:

KN_RC_EVALFC - return objective and constraint function values
KN_RC_EVALGA - return first derivative values in "objGrad" and "jac"
KN_RC_EVALFCGA - return objective and constraint function values

AND first derivative "objGrad" and "jac"
KN_RC_EVALH - return second derivative values in "hessian"
KN_RC_EVALH_NO_F (this version excludes the objective term)
KN_RC_EVALHV - return a Hessian-vector product in "hessVector"
KN_RC_EVALHV_NO_F (this version excludes the objective term)
KN_RC_EVALR - return residual function values for least squares
KN_RC_EVALRJ - return residual Jacobian values for least squares

The argument lambda is not defined when requesting EVALFC, EVALGA, EVALFCGA, EVALR or EVALRJ.

Usually, applications for standard optimization models define three callback functions: one for EVALFC, one for
EVALGA, and one for EVALH / EVALHV. The last function is only used when providing the Hessian (as op-
posed to using one of the Knitro options to approximate it) and evaluates H or HV depending on the value of
evalRequest.type. For least squares models, the application defines the two callback functions for EVALR and
EVALRJ (instead of EVALFC and EVALGA). Least squares applications do not provide a callback for the Hessian as
it is always approximated.

It is possible in most cases to combine EVALFC and EVALGA into a single callback function. This may be advan-
tageous if the application evaluates functions and their derivatives at the same time. In order to do this, set the user
option eval_fcga=KN_EVAL_FCGA_YES, and define one callback set in KN_add_eval_callback() that eval-
uates BOTH the functions and gradients (i.e. have it populate obj, c, objGrad, and jac in the evalResult structure),
and do not set a callback in KN_set_cb_grad(). Whenever Knitro needs a function + gradient evaluation, it will
callback to the function passed to KN_add_eval_callback() with an EVALFCGA request.

Combining function and gradient evaluations in one callback is not currently allowed if hes-
sopt=KN_HESSOPT_PRODUCT_FINDIFF. It is not possible to combine EVALH / EVALHV because lambda
may change after the EVALFC call. Generally it is most efficient to separate function and gradient callbacks, since a
gradient evaluation is not needed at every x value where functions are evaluated.

The userParams argument is an arbitrary pointer passed from the Knitro KN_solve() call to the callback. It

186 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

should be used to pass parameters defined and controlled by the application, or left NULL if not used. Knitro does not
modify or dereference the userParams pointer.

For simplicity, the following user-defined evaluation callback functions all use the same KN_eval_callback()
function prototype defined below:

funcCallback
gradCallback
hessCallback
rsdCallback (for least squares)
rsdJacCallback (for least squares)

Callbacks should return 0 if successful, a negative error code if not. Possible unsuccessful (negative) error codes for
the func/grad/hess/rsd/rsdJac callback functions include:

KN_RC_CALLBACK_ERR (for generic callback errors)
KN_RC_EVAL_ERR (for evaluation errors, e.g log(-1))

In addition, for the “func” (as well as the “newpoint”, “ms_process” and “mip_node” user callbacks), the user may set
the following return code to force Knitro to terminate based on some user-defined condition.:

KN_RC_USER_TERMINATION (to use a callback routine
for user specified termination)

typedef struct KN_eval_request {
int type;
int threadID;

const double * x;
const double * lambda;
const double * sigma;
const double * vec;

} KN_eval_request, *KN_eval_request_ptr;

Structure used to pass back evaluation information for evaluation callbacks.

Parame-
ter

Description

type: indicates the type of evaluation requested
threadID: the thread ID associated with this evaluation request; useful for multi-threaded, concurrent

evaluations
x: values of unknown (primal) variables used for all evaluations
lambda: values of unknown dual variables/Lagrange multipliers used for the evaluation of the Hessian
sigma: scalar multiplier for the objective component of the Hessian
vec: vector array value for Hessian-vector products (only used when user option

hessopt=KN_HESSOPT_PRODUCT)

typedef struct KN_eval_result {
double * obj;
double * c;
double * objGrad;
double * jac;
double * hess;
double * hessVec;
double * rsd;
double * rsdJac;

} KN_eval_result, *KN_eval_result_ptr;

3.5. Callable library API reference 187



Artelys Knitro Documentation, Release 11.0.0

Structure used to return results information for evaluation callbacks. The arrays (and their indices and sizes) returned
in this structure are local to the specific callback structure used for the evaluation.

Pa-
rame-
ter

Description

obj: objective function evaluated at “x” for EVALFC or EVALFCGA request (funcCallback)
c: (length nC) constraint values evaluated at “x” for EVALFC or EVALFCGA request (funcCallback)
obj-
Grad:

(length nV) objective gradient evaluated at “x” for EVALGA request (gradCallback) or EVALFCGA
request (funcCallback)

jac: (length nnzJ) constraint Jacobian evaluated at “x” for EVALGA request (gradCallback) or EVALFCGA
request (funcCallback)

hess: (length nnzH) Hessian evaluated at “x”, “lambda”, “sigma” for EVALH or EVALH_NO_F request
(hessCallback)

hessVec: (length n=number variables in the model) Hessian-vector product evaluated at “x”, “lambda”, “sigma”
for EVALHV or EVALHV_NO_F request (hessCallback)

rsd: (length nR) residual values evaluated at “x” for EVALR request (rsdCallback)
rsdJac: (length nnzJ) residual Jacobian evaluated at “x” for EVALRJ request (rsdJacCallback)

typedef struct CB_context CB_context, *CB_context_ptr;

The callback structure/object. Note the CB_context_ptr is allocated and managed by Knitro: the user does not
have to free it.

typedef int KN_eval_callback (KN_context_ptr kc,
CB_context_ptr cb,
KN_eval_request_ptr const evalRequest,
KN_eval_result_ptr const evalResult,
void * const userParams);

Function prototype for evaluation callbacks.

KN_add_eval_callback()

int KNITRO_API KN_add_eval_callback ( KN_context_ptr kc,
const KNBOOL evalObj,
const KNINT nC,
const KNINT * const indexCons, /

→˓* nullable if nC=0 */
KN_eval_callback * const funcCallback,
CB_context_ptr * const cb);

This is the routine for adding a callback for (nonlinear) evaluations of objective and constraint functions. This routine
can be called multiple times to add more than one callback structure (e.g. to create different callback structures to
handle different blocks of constraints). This routine specifies the minimal information needed for a callback, and
creates the callback structure cb, which can then be passed to other callback functions to set additional information
for that callback.

188 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Param-
eter

Description

evalObj boolean indicating whether or not any part of the objective function is evaluated in the callback
nC number of constraints evaluated in the callback
index-
Cons

(length nC) index of constraints evaluated in the callback (set to NULL if nC=0)

func-
Call-
back

a pointer to a function that evaluates the objective parts (if evalObj=KNTRUE) and any constraint parts
(specified by nC and indexCons) involved in this callback; when eval_fcga=KN_EVAL_FCGA_YES,
this callback should also evaluate the relevant first derivatives/gradients

cb (output) the callback structure that gets created by calling this function; all the memory for this
structure is handled by Knitro

After a callback is created by KN_add_eval_callback(), the user can then specify gradient information and
structure through KN_set_cb_grad() and Hessian information and structure through KN_set_cb_hess(). If
not set, Knitro will approximate these. However, it is highly recommended to provide a callback routine to specify
the gradients if at all possible as this will greatly improve the performance of Knitro. Even if a gradient callback
is not provided, it is still helpful to provide the sparse Jacobian structure through KN_set_cb_grad() to im-
prove the efficiency of the finite-difference gradient approximations. Other optional information can also be set via
KN_set_cb_*() functions as detailed below.

Returns 0 if OK, nonzero if error.

KN_add_eval_callback_all()

int KNITRO_API KN_add_eval_callback_all ( KN_context_ptr kc,
KN_eval_callback * const

→˓funcCallback,
CB_context_ptr * const cb)

Simplified version of KN_add_eval_callback() to create a callback that applies to the objective function and
all constraints.

KN_add_eval_callback_one()

int KNITRO_API KN_add_eval_callback_one ( KN_context_ptr kc,
const KNINT index, /

→˓* -1 for obj */
KN_eval_callback * const

→˓funcCallback,
CB_context_ptr * const cb)

Version of KN_add_eval_callback() to create a callback that only applies to a single objective function or
constraint. Set index to the corresponding constraint index or use -1 for the objective.

KN_add_lsq_eval_callback()

int KNITRO_API KN_add_lsq_eval_callback ( KN_context_ptr kc,
const KNINT nR,
const KNINT * const indexRsds,

KN_eval_callback * const rsdCallback,
CB_context_ptr * const cb);

Add an evaluation callback for a least-squares models. Similar to KN_add_eval_callback() above, but for
least-squares models.

3.5. Callable library API reference 189



Artelys Knitro Documentation, Release 11.0.0

Parame-
ter

Description

nR number of residuals evaluated in the callback
in-
dexRsds

(length nR) index of residuals evaluated in the callback

rsdCall-
back

a pointer to a function that evaluates any residual parts (specified by nR and indexRsds) involved in
this callback

cb (output) the callback structure that gets created by calling this function; all the memory for this
structure is handled by Knitro

After a callback is created by KN_add_lsq_eval_callback(), the user can then specify residual Jacobian infor-
mation and structure through KN_set_cb_rsd_jac(). If not set, Knitro will approximate the residual Jacobian.
However, it is highly recommended to provide a callback routine to specify the residual Jacobian if at all possible as
this will greatly improve the performance of Knitro. Even if a callback for the residual Jacobian is not provided, it
is still helpful to provide the sparse Jacobian structure for the residuals through KN_set_cb_rsd_jac() to im-
prove the efficiency of the finite-difference Jacobian approximation. Other optional information can also be set via
KN_set_cb_*() functions as detailed below. Returns 0 if OK, nonzero if error.

KN_add_lsq_eval_callback_all()

int KNITRO_API KN_add_lsq_eval_callback_all ( KN_context_ptr kc,
KN_eval_callback * const

→˓rsdCallback,
CB_context_ptr * const cb)

Simplified version of KN_add_lsq_eval_callback() to create a callback that applies to all residual functions.

KN_add_lsq_eval_callback_one()

int KNITRO_API KN_add_lsq_eval_callback_one ( KN_context_ptr kc,
const KNINT

→˓indexRsd,
KN_eval_callback * const

→˓rsdCallback,
CB_context_ptr * const cb);

Version of KN_add_lsq_eval_callback() to create a callback that only applies to a single residual function.
Set indexRsd to the corresponding residual index.

KN_set_cb_grad()

int KNITRO_API KN_set_cb_grad ( KN_context_ptr kc,
CB_context_ptr cb,

const KNINT nV, /* or KN_DENSE
→˓*/

const KNINT * const objGradIndexVars,
const KNLONG nnzJ, /* or KN_DENSE_

→˓* */
const KNINT * const jacIndexCons,
const KNINT * const jacIndexVars,

KN_eval_callback * const gradCallback); /*
→˓nullable */

This API function is used to set the objective gradient and constraint Jacobian structure and also (optionally) a callback
function to evaluate the objective gradient and constraint Jacobian provided through this callback.

190 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Parame-
ter

Description

cb a callback structure created from a previous call to KN_add_eval_callback()
nV number of nonzero components in the objective gradient for this callback if providing in sparse

form; set to KN_DENSE to provide the full objective gradient
obj-
GradIn-
dexVars

(length nV) the nonzero indices of the objective gradient; set to NULL if nV=KN_DENSE or nV=0
(i.e. evalObj=KNFALSE)

nnzJ number of nonzeroes in the sparse constraint Jacobian computed through this callback; set to
KN_DENSE_ROWMAJOR to provide the full Jacobian in row major order (i.e. ordered by
rows/constraints), or KN_DENSE_COLMAJOR to provide the full Jacobian in column major order
(i.e. ordered by columns/ variables)

jacIndex-
Cons

(length nnzJ) constraint index (row) of each nonzero; set to NULL if
nnzJ=KN_DENSE_ROWMAJOR/KN_DENSE_COLMAJOR or nnzJ=0

jacIndex-
Vars

(length nnzJ) variable index (column) of each nonzero; set to NULL if
nnzJ=KN_DENSE_ROWMAJOR/KN_DENSE_COLMAJOR or nnzJ=0

gradCall-
back

a pointer to a function that evaluates the objective gradient parts and any constraint Jacobian parts
involved in this callback; set to NULL if using finite-difference gradient approximations (specified
via KN_set_cb_gradopt()), or if gradients and functions are provided together in the funcCallback
(i.e. eval_fcga=KN_EVAL_FCGA_YES).

The user should generally always try to define the sparsity structure for the Jacobian (nnzJ, jacIndexCons,
jacIndexVars). Even when using finite-difference approximations to compute the gradients, knowing the
sparse structure of the Jacobian can allow Knitro to compute these finite-difference approximations faster. How-
ever, if the user is unable to provide this sparsity structure, then one can set nnzJ to KN_DENSE_ROWMAJOR or
KN_DENSE_COLMAJOR and set jacIndexCons and jacIndexVars to NULL.

KN_set_cb_hess()

int KNITRO_API KN_set_cb_hess ( KN_context_ptr kc,
CB_context_ptr cb,

const KNLONG nnzH, /* or KN_DENSE_
→˓* */

const KNINT * const hessIndexVars1,
const KNINT * const hessIndexVars2,

KN_eval_callback * const hessCallback);

This API function is used to set the structure and a callback function to evaluate the components of the Hessian of
the Lagrangian provided through this callback. KN_set_cb_hess() should only be used when defining a user-supplied
Hessian callback function (via the “hessopt=KN_HESSOPT_EXACT” user option). When Knitro is approximating
the Hessian, it cannot make use of the Hessian sparsity structure.

Param-
eter

Description

cb a callback structure created from a previous call to KN_add_eval_callback()
nnzH number of nonzeroes in the sparse Hessian of the Lagrangian computed through this callback; set to

KN_DENSE_ROWMAJOR to provide the full upper triangular Hessian in row major order, or
KN_DENSE_COLMAJOR to provide the full upper triangular Hessian in column major order. Note
that the Hessian is symmetric, so the lower triangular components are the same as the upper triangular
components with row and column indices swapped.

hessIn-
dexVars1

(length nnzH) first variable index of each nonzero; set to NULL if
nnzH=KN_DENSE_ROWMAJOR/KN_DENSE_COLMAJOR

hessIn-
dexVars2

(length nnzH) second variable index of each nonzero; set to NULL if
nnzH=KN_DENSE_ROWMAJOR/KN_DENSE_COLMAJOR

hessCall-
back

a pointer to a function that evaluates the components of the Hessian of the Lagrangian provide in this
callback

3.5. Callable library API reference 191



Artelys Knitro Documentation, Release 11.0.0

KN_set_cb_rsd_jac()

int KNITRO_API KN_set_cb_rsd_jac ( KN_context_ptr kc,
CB_context_ptr cb,

const KNLONG nnzJ, /* or KN_
→˓DENSE_* */

const KNINT * const jacIndexRsds,
const KNINT * const jacIndexVars,

KN_eval_callback * const rsdJacCallback); /
→˓* nullable */

This API function is used to set the residual Jacobian structure and also (optionally) a callback function to evaluate the
residual Jacobian provided through this callback.

Param-
eter

Description

cb a callback structure created from a previous call to KN_add_lsq_eval_callback()
nnzJ number of nonzeroes in the sparse residual Jacobian computed through this callback; set to

KN_DENSE_ROWMAJOR to provide the full Jacobian in row major order (i.e. ordered by
rows/residuals), or KN_DENSE_COLMAJOR to provide the full Jacobian in column major order
(i.e. ordered by columns/ variables)

jacIn-
dexRsds

(length nnzJ) residual index (row) of each nonzero; set to NULL if
nnzJ=KN_DENSE_ROWMAJOR/KN_DENSE_COLMAJOR or nnzJ=0

jacIn-
dexVars

(length nnzJ) variable index (column) of each nonzero; set to NULL if
nnzJ=KN_DENSE_ROWMAJOR/KN_DENSE_COLMAJOR or nnzJ=0

rsdJac-
Callback

a pointer to a function that evaluates any residual Jacobian parts involved in this callback; set to
NULL if using a finite- difference Jacobian approximation (specified via KN_set_cb_gradopt())

The user should generally always try to define the sparsity structure for the Jacobian (nnzJ, jacIndexRsds,
jacIndexVars). Even when using a finite-difference approximation to compute the Jacobian, knowing the
sparse structure of the Jacobian can allow Knitro to compute this finite-difference approximation faster. How-
ever, if the user is unable to provide this sparsity structure, then one can set nnzJ to KN_DENSE_ROWMAJOR or
KN_DENSE_COLMAJOR and set jacIndexRsds and jacIndexVars to NULL.

KN_set_cb_user_params()

int KNITRO_API KN_set_cb_user_params (KN_context_ptr kc,
CB_context_ptr cb,
void * const userParams);

Define a userParams structure for an evaluation callback.

KN_set_cb_gradopt()

int KNITRO_API KN_set_cb_gradopt ( KN_context_ptr kc,
CB_context_ptr cb,

const int gradopt);

Specify which gradient option gradopt will be used to evaluate the first derivatives of the callback functions. If
gradopt=:c:macro:KN_GRADOPT_EXACT then a gradient evaluation callback must be set by KN_set_cb_grad()
(or KN_set_cb_rsd_jac() for least squares).

KN_set_cb_relstepsizes()

int KNITRO_API KN_set_cb_relstepsizes ( KN_context_ptr kc,
CB_context_ptr cb,

const KNINT nV,
const KNINT * const indexVars,

192 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

const double * const xRelStepSizes);
int KNITRO_API KN_set_cb_relstepsizes_all ( KN_context_ptr kc,

CB_context_ptr cb,
const double * const xRelStepSizes);

int KNITRO_API KN_set_cb_relstepsize ( KN_context_ptr kc,
CB_context_ptr cb,

const KNINT indexVar,
const double xRelStepSize);

Set an array of relative stepsizes to use for the finite-difference gradient/Jacobian computations when using finite-
difference first derivatives. Finite-difference step sizes “delta” in Knitro are computed as:

delta[i] = relStepSizes[i]*max(abs(x[i]),1)

The default relative step sizes for each component of “x” are sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences. Use this function to overwrite the default values. Any zero values will use Knitro default
values, while non-zero values will overwrite default values. Knitro makes a local copy of all inputs, so the application
may free memory after the call. Returns 0 if OK, nonzero if error.

KN_get_cb_number_cons()

int KNITRO_API KN_get_cb_number_cons (const KN_context_ptr kc,
const CB_context_ptr cb,

KNINT * const nC);

Retrieve the number of constraints nC being evaluated through callback cb. Returns 0 if OK, nonzero if error.

KN_get_cb_number_rsds()

int KNITRO_API KN_get_cb_number_rsds (const KN_context_ptr kc,
const CB_context_ptr cb,

KNINT * const nR);

Retrieve the number of residuals nR being evaluated through callback cb. Returns 0 if OK, nonzero if error.

KN_get_cb_objgrad_nnz()

int KNITRO_API KN_get_cb_objgrad_nnz (const KN_context_ptr kc,
const CB_context_ptr cb,

KNINT * const nnz);

Retrieve the number of non-zero objective gradient elements nnz evaluated through callback cb. Returns 0 if OK,
nonzero if error.

KN_get_cb_jacobian_nnz()

int KNITRO_API KN_get_cb_jacobian_nnz (const KN_context_ptr kc,
const CB_context_ptr cb,

KNLONG * const nnz);

Retrieve the number of non-zero Jacobian elements nnz evaluated through callback cb. Returns 0 if OK, nonzero if
error.

KN_get_cb_rsd_jacobian_nnz()

int KNITRO_API KN_get_cb_rsd_jacobian_nnz (const KN_context_ptr kc,
const CB_context_ptr cb,

KNLONG * const nnz);

3.5. Callable library API reference 193



Artelys Knitro Documentation, Release 11.0.0

Retrieve the number of non-zero residual Jacobian elements nnz evaluated through callback cb. Returns 0 if OK,
nonzero if error.

KN_get_cb_hessian_nnz()

int KNITRO_API KN_get_cb_hessian_nnz (const KN_context_ptr kc,
const CB_context_ptr cb,

KNLONG * const nnz);

Retrieve the number of non-zero Hessian elements nnz evaluated through callback cb. Returns 0 if OK, nonzero if
error.

3.5.12 Other user callbacks

Other user callbacks that aren’t involved in evaluations use the KN_user_callback() or other function protoypes.
These include:

KN_set_newpt_callback
KN_set_mip_node_callback
KN_set_ms_process_callback
KN_set_ms_initpt_callback
KN_set_puts_callback

Callbacks should return 0 if successful, a negative error code if not. In addition, for the “newpoint”, “ms_process”
and “mip_node” callbacks, the user may set the following return code to force Knitro to terminate based on some
user-defined condition.:

KN_RC_USER_TERMINATION (to use a callback routine
for user specified termination)

typedef int KN_user_callback ( KN_context_ptr kc,
const double * const x,
const double * const lambda,

void * const userParams);

Type declaration for several non-evaluation user callbacks defined below.

KN_set_newpt_callback()

int KNITRO_API KN_set_newpt_callback (KN_context_ptr kc,
KN_user_callback * const fnPtr,
void * const userParams);

Set the callback function that is invoked after Knitro computes a new estimate of the solution point (i.e., after ev-
ery iteration). The function should not modify any Knitro arguments. Argument kc passed to the callback from
inside Knitro is the context pointer for the current problem being solved inside Knitro (either the main single-solve
problem, or a subproblem when using multi-start, Tuner, etc.). Arguments x and lambda contain the latest solu-
tion estimates. Other values (such as objective, constraint, jacobian, etc.) can be queried using the corresonding
KN_get_XXX_values() methods. Note: Currently only active for continuous models. Return 0 if successful, a
negative error code if not.

KN_set_mip_node_callback()

int KNITRO_API KN_set_mip_node_callback (KN_context_ptr kc,
KN_user_callback * const fnPtr,
void * const userParams);

194 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

This callback function is for mixed integer (MIP) problems only. Set the callback function that is invoked after Knitro
finishes processing a node on the branch-and-bound tree (i.e., after a relaxed subproblem solve in the branch-and-
bound procedure). Argument kc passed to the callback from inside Knitro is the context pointer for the last node
subproblem solved inside Knitro. The function should not modify any Knitro arguments. Arguments x and lambda
contain the solution from the node solve. Return 0 if successful, a negative error code if not.

KN_set_ms_process_callback()

int KNITRO_API KN_set_ms_process_callback (KN_context_ptr kc,
KN_user_callback * const fnPtr,
void * const userParams);

This callback function is for multistart (MS) problems only. Set the callback function that is invoked after Knitro
finishes processing a multistart solve. Argument kc passed to the callback from inside Knitro is the context pointer for
the last multistart subproblem solved inside Knitro. The function should not modify any Knitro arguments. Arguments
x and lambda contain the solution from the last solve. Return 0 if successful, a negative error code if not.

KN_set_ms_initpt_callback()

typedef int KN_ms_initpt_callback ( KN_context_ptr kc,
const KNINT nSolveNumber,

double * const x,
double * const lambda,
void * const userParams);

int KNITRO_API KN_set_ms_initpt_callback (KN_context_ptr kc,
KN_ms_initpt_callback * const fnPtr,
void * const userParams);

This callback allows applications to specify an initial point before each local solve in the multistart procedure. On
input, arguments x and lambda are the randomly generated initial points determined by Knitro, which can be over-
written by the user. The argument nSolveNumber is the number of the multistart solve. Return 0 if successful, a
negative error code if not. Use KN_ms_initpt_callback() type declaration for this callback.

KN_set_puts_callback()

This callback allows applications to handle/redirect output. Applications can set a “put string” callback function
to handle output generated by the Knitro solver. By default Knitro prints to stdout or a file named knitro.log,
as determined by KN_PARAM_OUTMODE. The KN_puts() function takes a userParams argument which is a
pointer passed directly from KN_solve(). The function should return the number of characters that were printed.
Use KN_puts() type declaration for this callback.

3.5.13 Other algorithmic/modeling features

KN_set_var_feastols()

int KNITRO_API KN_set_var_feastols ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const double * const xFeasTols);

int KNITRO_API KN_set_var_feastols_all ( KN_context_ptr kc,
const double * const xFeasTols);

int KNITRO_API KN_set_var_feastol ( KN_context_ptr kc,
const KNINT indexVar,
const double xFeasTol);

3.5. Callable library API reference 195



Artelys Knitro Documentation, Release 11.0.0

Set an array of absolute feasibility tolerances for variable bounds to use for the termination tests. The user op-
tions KN_PARAM_FEASTOL / KN_PARAM_FEASTOLABS define a single tolerance that is applied equally to every
constraint and variable. This API function allows the user to specify separate feasibility termination tolerances for
each variable. Values specified through this function will override the value determined by KN_PARAM_FEASTOL /
KN_PARAM_FEASTOLABS. The tolerances should be positive values. If a non-positive value is specified, that vari-
able will use the standard tolerances based on KN_PARAM_FEASTOL / KN_PARAM_FEASTOLABS. The variables
are considered to be satisfied when:

x[i] - xUpBnds[i] <= xFeasTols[i] for all i=1..n, and
xLoBnds[i] - x[i] <= xFeasTols[i] for all i=1..n.

Returns 0 if OK, nonzero if error.

KN_set_con_feastols()

int KNITRO_API KN_set_con_feastols ( KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,
const double * const cFeasTols);

int KNITRO_API KN_set_con_feastols_all ( KN_context_ptr kc,
const double * const cFeasTols);

int KNITRO_API KN_set_con_feastol ( KN_context_ptr kc,
const KNINT indexCon,
const double cFeasTol);

Set an array of absolute constraint feasibility tolerances to use for the termination tests. The user options
KN_PARAM_FEASTOL / KN_PARAM_FEASTOLABS define a single tolerance that is applied equally to every con-
straint and variable. This API function allows the user to specify separate feasibility termination tolerances for each
constraint. Values specified through this function will override the value determined by KN_PARAM_FEASTOL /
KN_PARAM_FEASTOLABS. The tolerances should be positive values. If a non-positive value is specified, that con-
straint will use the standard tolerances based on KN_PARAM_FEASTOL / KN_PARAM_FEASTOLABS. The regular
constraints are considered to be satisfied when:

c[i] - cUpBnds[i] <= cFeasTols[i] for all i=1..m, and
cLoBnds[i] - c[i] <= cFeasTols[i] for all i=1..m

Returns 0 if OK, nonzero if error.

KN_set_compcon_feastols()

int KNITRO_API KN_set_compcon_feastols ( KN_context_ptr kc,
const KNINT nCC,
const KNINT * const indexCompCons,
const double * const ccFeasTols);

int KNITRO_API KN_set_compcon_feastols_all ( KN_context_ptr kc,
const double * const ccFeasTols);

int KNITRO_API KN_set_compcon_feastol ( KN_context_ptr kc,
const KNINT indexCompCon,
const double ccFeasTol);

Set an array of absolute feasibility tolerances to use for the complementarity constraint termination tests. The user
options KN_PARAM_FEASTOL / KN_PARAM_FEASTOLABS define a single tolerance that is applied equally to ev-
ery constraint and variable. This API function allows the user to specify separate feasibility termination tolerances
for each complementarity constraint. Values specified through this function will override the value determined by
KN_PARAM_FEASTOL / KN_PARAM_FEASTOLABS. The tolerances should be positive values. If a non-positive
value is specified, that complementarity constraint will use the standard tolerances based on KN_PARAM_FEASTOL /
KN_PARAM_FEASTOLABS. The complementarity constraints are considered to be satisfied when:

196 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

min(x1_i, x2_i) <= ccFeasTols[i] for all i=1..ncc,

where x1 and x2 are the arrays of complementary pairs. Returns 0 if OK, nonzero if error.

KN_set_var_scalings()

int KNITRO_API KN_set_var_scalings ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const double * const xScaleFactors,
const double * const xScaleCenters);

int KNITRO_API KN_set_var_scalings_all ( KN_context_ptr kc,
const double * const xScaleFactors,
const double * const xScaleCenters);

int KNITRO_API KN_set_var_scaling ( KN_context_ptr kc,
const KNINT indexVar,
const double xScaleFactor,
const double xScaleCenter);

Set an array of variable scaling and centering values to perform a linear scaling:

x[i] = xScaleFactors[i] * xScaled[i] + xScaleCenters[i]

for each variable. These scaling factors should try to represent the “typical” values of the x variables so that the scaled
variables (xScaled) used internally by Knitro are close to one. The values for xScaleFactors should be positive.
If a non-positive value is specified, that variable will not be scaled. Returns 0 if OK, nonzero if error.

KN_set_con_scalings()

int KNITRO_API KN_set_con_scalings ( KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,
const double * const cScaleFactors);

int KNITRO_API KN_set_con_scalings_all ( KN_context_ptr kc,
const double * const cScaleFactors);

int KNITRO_API KN_set_con_scaling ( KN_context_ptr kc,
const KNINT indexCon,
const double cScaleFactor);

Set an array of constraint scaling values to perform a scaling:

cScaled[i] = cScaleFactors[i] * c[i]

for each constraint. These scaling factors should try to represent the “typical” values of the inverse of the
constraint values c so that the scaled constraints (cScaled) used internally by Knitro are close to one. Scal-
ing factors for standard constraints can be provided with cScaleFactors. The values for cScaleFactors
should be positive. If a non-positive value is specified, that constraint will use either the standard Knitro scaling
(KN_SCALE_USER_INTERNAL), or no scaling (KN_SCALE_USER_NONE). Returns 0 if OK, nonzero if error.

KN_set_compcon_scalings()

int KNITRO_API KN_set_compcon_scalings ( KN_context_ptr kc,
const KNINT nCC,
const KNINT * const indexCompCons,
const double * const ccScaleFactors);

int KNITRO_API KN_set_compcon_scalings_all ( KN_context_ptr kc,
const double * const ccScaleFactors);

int KNITRO_API KN_set_compcon_scaling ( KN_context_ptr kc,

3.5. Callable library API reference 197



Artelys Knitro Documentation, Release 11.0.0

const KNINT indexCompCons,
const double ccScaleFactor);

Set an array of complementarity constraint scaling values to perform a scaling:

ccScaled[i] = ccScaleFactors[i] * c[i]

for each complementarity constraint. These scaling factors should try to represent the “typical” values of the in-
verse of the complementarity constraint values c so that the scaled complementarity constraints (ccScaled) used
internally by Knitro are close to one. Scaling factors for complementarity constraints can be provided with
ccScaleFactors. The values for ccScaleFactors should be positive. If a non-positive value is specified,
that complementarity constraint will use either the standard Knitro scaling (KN_SCALE_USER_INTERNAL), or no
scaling (KN_SCALE_USER_NONE). Returns 0 if OK, nonzero if error.

KN_set_obj_scaling()

int KNITRO_API KN_set_obj_scaling ( KN_context_ptr kc,
const double objScaleFactor);

Set a scaling value for the objective function:

objScaled = objScaleFactor * obj

This scaling factor should try to represent the “typical” value of the inverse of the objective function value obj so
that the scaled objective (objScaled) used internally by Knitro is close to one. The value for objScaleFactor
should be positive. If a non-positive value is specified, then the objective will use either the standard Knitro scaling
(KN_SCALE_USER_INTERNAL), or no scaling (KN_SCALE_USER_NONE). Returns 0 if OK, nonzero if error.

KN_set_var_names()

int KNITRO_API KN_set_var_names ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,

char * const xNames[]);
int KNITRO_API KN_set_var_names_all ( KN_context_ptr kc,

char * const xNames[]);
int KNITRO_API KN_set_var_name ( KN_context_ptr kc,

const KNINT indexVars,
char * const xName);

Set names for model variables passed in by the user/modeling language so that Knitro can internally print out these
variable names. Knitro makes a local copy of all inputs, so the application may free memory after the call. Returns 0
if OK, nonzero if error.

KN_set_con_names()

int KNITRO_API KN_set_con_names ( KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,

char * const cNames[]);
int KNITRO_API KN_set_con_names_all ( KN_context_ptr kc,

char * const cNames[]);
int KNITRO_API KN_set_con_name ( KN_context_ptr kc,

const KNINT indexCon,
char * const cName);

Set names for model constraints passed in by the user/modeling language so that Knitro can internally print out these
constraint names. Knitro makes a local copy of all inputs, so the application may free memory after the call. Returns

198 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

0 if OK, nonzero if error.

KN_set_compcon_names()

int KNITRO_API KN_set_compcon_names ( KN_context_ptr kc,
const KNINT nCC,
const KNINT * const indexCompCons,

char * const ccNames[]);
int KNITRO_API KN_set_compcon_names_all ( KN_context_ptr kc,

char * const ccNames[]);
int KNITRO_API KN_set_compcon_name ( KN_context_ptr kc,

const int indexCompCon,
char * const ccName);

Set names for model complementarity constraints passed in by the user/modeling language so that Knitro can internally
print out these complementarity constraint names. Knitro makes a local copy of all inputs, so the application may free
memory after the call. Returns 0 if OK, nonzero if error.

KN_set_obj_name()

int KNITRO_API KN_set_obj_name ( KN_context_ptr kc,
const char * const objName);

Set name for model objective passed in by the user/modeling language so that Knitro can internally print out the
objective name. Returns 0 if OK, nonzero if error.

KN_set_var_honorbnds()

int KNITRO_API KN_set_var_honorbnds ( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const int * const xHonorBnds);

int KNITRO_API KN_set_var_honorbnds_all ( KN_context_ptr kc,
const int * const xHonorBnds);

int KNITRO_API KN_set_var_honorbnd ( KN_context_ptr kc,
const KNINT indexVar,
const int xHonorBnd);

This API function can be used to identify which variables should satisfy their variable bounds throughout the opti-
mization process (KN_HONORBNDS_ALWAYS). The user option KN_PARAM_HONORBNDS can be used to set ALL
variables to honor their bounds. This routine takes precedence over the setting of KN_PARAM_HONORBNDS and is
used to customize the settings for individual variables. Knitro makes a local copy of all inputs, so the application may
free memory after the call. Returns 0 if OK, nonzero if error.

KN_set_mip_branching_priorities()

int KNITRO_API KN_set_mip_branching_priorities
( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const int * const xPriorities);

int KNITRO_API KN_set_mip_branching_priorities_all
( KN_context_ptr kc,
const int * const xPriorities);

int KNITRO_API KN_set_mip_branching_priority
( KN_context_ptr kc,
const KNINT indexVar,
const int xPriority);

3.5. Callable library API reference 199



Artelys Knitro Documentation, Release 11.0.0

This function can be used to set the branching priorities for integer variables when using the MIP features in Knitro.
You must first set the types of variables (e.g. by calling KN_set_var_types()) before calling this function so
that integer variables are marked. Priorities must be positive numbers (variables with non-positive values are ignored).
Variables with higher priority values will be considered for branching before variables with lower priority values.
When priorities for a subset of variables are equal, the branching rule is applied as a tiebreaker. Values for continuous
variables are ignored. Knitro makes a local copy of all inputs, so the application may free memory after the call.
Returns 0 if OK, nonzero if error.

KN_set_mip_intvar_strategies()

int KNITRO_API KN_set_mip_intvar_strategies
( KN_context_ptr kc,
const KNINT nV,
const KNINT * const indexVars,
const int * const xStrategies);

int KNITRO_API KN_set_mip_intvar_strategies_all
( KN_context_ptr kc,
const int * const xStrategies);

int KNITRO_API KN_set_mip_intvar_strategy
( KN_context_ptr kc,
const KNINT indexVar,
const int xStrategy);

Set strategies for dealing with individual integer variables. Possible strategy values include:

KN_MIP_INTVAR_STRATEGY_NONE 0 (default)
KN_MIP_INTVAR_STRATEGY_RELAX 1
KN_MIP_INTVAR_STRATEGY_MPEC 2 (binary variables only)

The parameter indexVars should be an index value corresponding to an integer variable (nothing is done if
the index value corresponds to a continuous variable), and xStrategies should correspond to one of the
strategy values listed above. The default strategy is KN_MIP_INTVAR_STRATEGY_NONE, and the strategy
KN_MIP_INTVAR_STRATEGY_MPEC can only be applied to binary variables. Returns 0 if OK, nonzero if error.

3.5.14 Solving

KN_solve()

int KNITRO_API KN_solve (KN_context_ptr kc);

Call Knitro to solve the problem. The return value indicates the final exit code from the optimization process:

0: the final solution is verified optimal to specified tolerances;
-100 to -109: a feasible solution was found (but not verified optimal);
-200 to -209: Knitro terminated at an infeasible point;
-300 : the problem was determined to be unbounded;
-400 to -409: Knitro terminated because it reached a pre-defined limit

(a feasible point was found before reaching the limit);
-410 to -419: Knitro terminated because it reached a pre-defined limit

(no feasible point was found before reaching the limit);
-500 to -599: Knitro terminated with an input error or some non-standard error.

A detailed description of the possible return values is given in Return codes.

200 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

3.5.15 Reading model/solution properties

KN_get_number_vars()

int KNITRO_API KN_get_number_vars (const KN_context_ptr kc,
int * const nV);

Retrieve the number of variables nV in the model. Returns 0 if OK, nonzero if error.

KN_get_number_cons()

int KNITRO_API KN_get_number_cons (const KN_context_ptr kc,
int * const nC);

Retrieve the number of constraints nC in the model. Returns 0 if OK, nonzero if error.

KN_get_number_rsds()

int KNITRO_API KN_get_number_rsds (const KN_context_ptr kc,
int * const nR);

Retrieve the number of residuals nR in the model. Returns 0 if OK, nonzero if error.

KN_get_number_FC_evals()

int KNITRO_API KN_get_number_FC_evals (const KN_context_ptr kc,
int * const numFCevals);

Return the number of function evaluations requested by KN_solve() in numFCevals. One evaluation count
includes a single evaluation of the objective and all the constraints defined via callbacks (whether evaluated altogether
in one callback or evaluated using several separate callbacks). Returns 0 if OK, nonzero if error.

KN_get_number_GA_evals()

int KNITRO_API KN_get_number_GA_evals (const KN_context_ptr kc,
int * const numGAevals);

Return the number of gradient evaluations requested by KN_solve() in numGAevals. One evaluation count
includes a single evaluation of the first derivatives of the objective and all the constraints defined via gradient callbacks
(whether evaluated altogether in one callback or evaluated using several separate callbacks). Returns 0 if OK, nonzero
if error.

KN_get_number_H_evals()

int KNITRO_API KN_get_number_H_evals (const KN_context_ptr kc,
int * const numHevals);

Return the number of Hessian evaluations requested by KN_solve() in numHevals. One evaluation count includes
a single evaluation of all the components of the Hessian of the Lagrangian matrix defined via callbacks (whether
evaluated altogether in one callback or evaluated using several separate callbacks). Returns 0 if OK, nonzero if error.

KN_get_number_HV_evals()

int KNITRO_API KN_get_number_HV_evals (const KN_context_ptr kc,
int * const numHVevals);

Return the number of Hessian-vector products requested by KN_solve() in numHVevals. One evaluation count
includes a single evaluation of the product of the Hessian of the Lagrangian matrix with a vector submitted by Knitro
(whether evaluated altogether in one callback or evaluated using several separate callbacks). Returns 0 if OK, nonzero
if error.

3.5. Callable library API reference 201



Artelys Knitro Documentation, Release 11.0.0

KN_get_solution()

int KNITRO_API KN_get_solution (const KN_context_ptr kc,
int * const status,
double * const obj,
double * const x,
double * const lambda);

Return the solution status, objective, primal and dual variables. The status and objective value scalars are returned as
pointers that need to be de-referenced to get their values. The arrays x and lambda must be allocated by the user.
Returns 0 if call is successful; <0 if there is an error.

KN_get_obj_value()

int KNITRO_API KN_get_obj_value (const KN_context_ptr kc,
double * const obj);

Return the value of the objective obj(x) in obj. Returns 0 if call is successful; <0 if there is an error.

KN_get_obj_type()

int KNITRO_API KN_get_obj_type (const KN_context_ptr kc,
int * const objType);

Return the type (e.g. KN_OBJTYPE_GENERAL, KN_OBJTYPE_LINEAR, KN_OBJTYPE_QUADRATIC, etc.) of
the objective obj(x) in objType. Returns 0 if call is successful; <0 if there is an error.

KN_get_con_values()

int KNITRO_API KN_get_con_values (const KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,

double * const c);
int KNITRO_API KN_get_con_values_all (const KN_context_ptr kc,

double * const c);
int KNITRO_API KN_get_con_value (const KN_context_ptr kc,

const KNINT indexCon,
double * const c);

Return the values of the constraint vector c(x) in c. The array c must be allocated by the user. Returns 0 if call is
successful; <0 if there is an error.

KN_get_con_types()

int KNITRO_API KN_get_con_types (const KN_context_ptr kc,
const KNINT nC,
const KNINT * const indexCons,

int * const cTypes);
int KNITRO_API KN_get_con_types_all (const KN_context_ptr kc,

int * const cTypes);
int KNITRO_API KN_get_con_type (const KN_context_ptr kc,

const KNINT indexCon,
int * const cType);

Return the types (e.g. KN_CONTYPE_GENERAL, KN_CONTYPE_LINEAR, KN_CONTYPE_QUADRATIC, etc.) of
the constraint vector c(x) in cTypes. The array cTypes must be allocated by the user. Returns 0 if call is successful;
<0 if there is an error.

KN_get_rsd_values()

202 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KN_get_rsd_values (const KN_context_ptr kc,
const KNINT nR,
const KNINT * const indexRsds,

double * const r);
int KNITRO_API KN_get_rsd_values_all (const KN_context_ptr kc,

double * const r);
int KNITRO_API KN_get_rsd_value (const KN_context_ptr kc,

const KNINT indexRsd,
double * const r);

Return the values of the residual vector r(x) in r. The array r must be allocated by the user. Returns 0 if call is
successful; <0 if there is an error.

KN_get_number_iters()

int KNITRO_API KN_get_number_iters (const KN_context_ptr kc,
int * const numIters);

Return the number of iterations made by KN_solve() in numIters. Returns 0 if OK, nonzero if error. For
continuous problems only.

KN_get_number_cg_iters()

int KNITRO_API KN_get_number_cg_iters (const KN_context_ptr kc,
int * const numCGiters);

Return the number of conjugate gradients (CG) iterations made by KN_solve() in numCGiters. Returns 0 if OK,
nonzero if error. For continuous problems only.

KN_get_abs_feas_error()

int KNITRO_API KN_get_abs_feas_error (const KN_context_ptr kc,
double * const absFeasError);

Return the absolute feasibility error at the solution in absFeasError. Refer to the Knitro manual section Termina-
tion criteria for a detailed definition of this quantity. Returns 0 if OK, nonzero if error. For continuous problems only.

KN_get_rel_feas_error()

int KNITRO_API KN_get_rel_feas_error (const KN_context_ptr kc,
double * const relFeasError);

Return the relative feasibility error at the solution in relFeasError. Refer to the Knitro manual section Termination
criteria for a detailed definition of this quantity. Returns 0 if OK, nonzero if error. For continuous problems only.

KN_get_abs_opt_error()

int KNITRO_API KN_get_abs_opt_error (const KN_context_ptr kc,
double * const absOptError);

Return the absolute optimality error at the solution in absOptError. Refer to the Knitro manual section Termination
criteria for a detailed definition of this quantity. Returns 0 if OK, nonzero if error. For continuous problems only.

KN_get_rel_opt_error()

int KNITRO_API KN_get_rel_opt_error (const KN_context_ptr kc,
double * const relOptError);

3.5. Callable library API reference 203



Artelys Knitro Documentation, Release 11.0.0

Return the relative optimality error at the solution in relOptError. Refer to the Knitro manual section Termination
criteria for a detailed definition of this quantity. Returns 0 if OK, nonzero if error. For continuous problems only.

KN_get_objgrad_values()

int KNITRO_API KN_get_objgrad_nnz (const KN_context_ptr kc,
KNINT * const nnz);

int KNITRO_API KN_get_objgrad_values (const KN_context_ptr kc,
KNINT * const indexVars,
double * const objGrad);

Return the values of the objective gradient vector in indexVars and objGrad. The objective gradient val-
ues returned correspond to the non-zero sparse objective gradient indices provided by the user. The arrays
indexVars and objGrad must be allocated by the user. The size of these arrays is obtained by first calling
KN_get_objgrad_nnz(). Returns 0 if call is successful; <0 if there is an error. For continuous problems only.

KN_get_objgrad_values_all()

int KNITRO_API KN_get_objgrad_values_all (const KN_context_ptr kc,
double * const objGrad);

Return the values of the full (dense) objective gradient in objGrad. The array objGrad must be allocated by the
user (the size is equal to the total number of variables in the problem). Returns 0 if call is successful; <0 if there is an
error. For continuous problems only.

KN_get_jacobian_values()

int KNITRO_API KN_get_jacobian_nnz (const KN_context_ptr kc,
KNLONG * const nnz);

int KNITRO_API KN_get_jacobian_values (const KN_context_ptr kc,
KNINT * const indexCons,
KNINT * const indexVars,
double * const jac);

Return the values of the constraint Jacobian in indexCons, indexVars, and jac. The Jacobian values returned
correspond to the non-zero sparse Jacobian indices provided by the user. The arrays indexCons, indexVars, and
jac must be allocated by the user. The size of these arrays is obtained by first calling KN_get_jacobian_nnz().
Returns 0 if call is successful; <0 if there is an error. For continuous problems only.

KN_get_rsd_jacobian_values()

int KNITRO_API KN_get_rsd_jacobian_nnz (const KN_context_ptr kc,
KNLONG * const nnz);

int KNITRO_API KN_get_rsd_jacobian_values (const KN_context_ptr kc,
KNINT * const indexRsds,
KNINT * const indexVars,
double * const rsdJac);

Return the values of the residual Jacobian in indexRsds, indexVars, and rsdJac. The Jacobian values
returned correspond to the non-zero sparse Jacobian indices provided by the user. The arrays indexRsds,
indexVars and rsdJac must be allocated by the user. The size of these arrays is obtained by first calling
KN_get_rsd_jacobian_nnz(). Returns 0 if call is successful; <0 if there is an error. For continuous least-
squares problems only.

KN_get_hessian_values()

int KNITRO_API KN_get_hessian_nnz (const KN_context_ptr kc,
KNLONG * const nnz);

int KNITRO_API KN_get_hessian_values (const KN_context_ptr kc,

204 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

KNINT * const indexVars1,
KNINT * const indexVars2,
double * const hess);

Return the values of the Hessian (or possibly Hessian approximation) in hess. This routine is currently only valid if
1 of the 2 following cases holds:

1. KN_HESSOPT_EXACT (presolver on or off), or;

2. KN_HESSOPT_BFGS or KN_HESSOPT_SR1, but only with the Knitro presolver off (i.e.
KN_PRESOLVE_NONE).

3. Solving a least squares model with the Gauss-Newton Hessian and the Gauss-Newton Hessian is explicitly
computed and stored in Knitro.

In all other cases, either Knitro does not have an internal representation of the Hessian (or Hessian approximation),
or the internal Hessian approximation corresponds only to the presolved problem form and may not be valid for the
original problem form. In these cases indexVars1, indexVars2, and hess are left unmodified, and the routine
has return code 1.

Note that in case 2 above (KN_HESSOPT_BFGS or KN_HESSOPT_SR1) the values returned in hess are the upper
triangular values of the dense quasi-Newton Hessian approximation stored row-wise. There are ((n*n - n)/2 + n) such
values (where n is the number of variables in the problem. These values may be quite different from the values of the
exact Hessian.

When KN_HESSOPT_EXACT (case 1 above) the Hessian values returned correspond to the non-zero sparse Hessian
indices provided by the user.

The arrays indexVars1, indexVars2 and hessmust be allocated by the user. The size of these arrays is obtained
by first calling KN_get_hessian_nnz(). Returns 0 if call is successful; 1 if hess was not set because Knitro
does not have a valid Hessian for the model stored; <0 if there is an error. For continuous problems only.

KN_get_mip_number_nodes()

int KNITRO_API KN_get_mip_number_nodes (const KN_context_ptr kc,
int * const numNodes);

Return the number of nodes processed in the MIP solve in numNodes. Returns 0 if OK, nonzero if error.

KN_get_mip_number_solves()

int KNITRO_API KN_get_mip_number_solves (const KN_context_ptr kc,
int * const numSolves);

Return the number of continuous subproblems processed in the MIP solve in numSolves. Returns 0 if OK, nonzero
if error.

KN_get_mip_abs_gap()

int KNITRO_API KN_get_mip_abs_gap (const KN_context_ptr kc,
double * const absGap);

Return the final absolute integrality gap in the MIP solve in absGap. Refer to the Knitro manual section Termination
criteria for a detailed definition of this quantity. Set to KN_INFINITY if no incumbent (i.e., integer feasible) point
found. Returns 0 if OK, nonzero if error.

KN_get_mip_rel_gap()

int KNITRO_API KN_get_mip_rel_gap (const KN_context_ptr kc,
double * const relGap);

3.5. Callable library API reference 205



Artelys Knitro Documentation, Release 11.0.0

Return the final absolute integrality gap in the MIP solve in relGap. Refer to the Knitro manual section Termination
criteria for a detailed definition of this quantity. Set to KN_INFINITY if no incumbent (i.e., integer feasible) point
found. Returns 0 if OK, nonzero if error.

KN_get_mip_incumbent_obj()

int KNITRO_API KN_get_mip_incumbent_obj (const KN_context_ptr kc,
double * const incumbentObj);

Return the objective value of the MIP incumbent solution in incumbentObj. Set to KN_INFINITY if no incumbent
(i.e., integer feasible) point found. Returns 0 if incumbent solution exists and call is successful; 1 if no incumbent (i.e.,
integer feasible) exists; <0 if there is an error.

KN_get_mip_relaxation_bnd()

int KNITRO_API KN_get_mip_relaxation_bnd (const KN_context_ptr kc,
double * const relaxBound);

Return the value of the current MIP relaxation bound in relaxBound. Returns 0 if OK, nonzero if error.

KN_get_mip_lastnode_obj()

int KNITRO_API KN_get_mip_lastnode_obj (const KN_context_ptr kc,
double * const lastNodeObj);

Return the objective value of the most recently solved MIP node subproblem in lastNodeObj. Returns 0 if OK,
nonzero if error.

KN_get_mip_incumbent_x()

int KNITRO_API KN_get_mip_incumbent_x (const KN_context_ptr kc,
double * const x);

Return the MIP incumbent solution in x if one exists. Returns 0 if incumbent solution exists and call is successful; 1
if no incumbent (i.e., integer feasible) point exists and leaves x unmodified; <0 if there is an error.

3.5.16 Problem definition defines

KN_INFINITY

#define KN_INFINITY DBL_MAX

Use to set infinite variable and constraint bounds in Knitro.

KN_PARAMTYPE

#define KN_PARAMTYPE_INTEGER 0
#define KN_PARAMTYPE_FLOAT 1
#define KN_PARAMTYPE_STRING 2

Possible parameter types.

KN_OBJGOAL

#define KN_OBJGOAL_MINIMIZE 0
#define KN_OBJGOAL_MAXIMIZE 1

Possible objective goals for the solver (objGoal in KN_set_obj_goal()).

206 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

KN_OBJTYPE

#define KN_OBJTYPE_CONSTANT -1
#define KN_OBJTYPE_GENERAL 0
#define KN_OBJTYPE_LINEAR 1
#define KN_OBJTYPE_QUADRATIC 2

Possible values for the objective type.

KN_CONTYPE

#define KN_CONTYPE_CONSTANT -1
#define KN_CONTYPE_GENERAL 0
#define KN_CONTYPE_LINEAR 1
#define KN_CONTYPE_QUADRATIC 2
#define KN_CONTYPE_CONIC 3

Possible values for the constraint type.

KN_RSDTYPE

#define KN_RSDTYPE_CONSTANT -1
#define KN_RSDTYPE_GENERAL 0
#define KN_RSDTYPE_LINEAR 1

Possible values for the residual type.

KN_CCTYPE

#define KN_CCTYPE_VARVAR 0
#define KN_CCTYPE_VARCON 1 /* NOT SUPPORTED YET */
#define KN_CCTYPE_CONCON 2 /* NOT SUPPORTED YET */

Possible values for the complementarity constraint type (ccTypes in KN_set_compcons()). Currently only
KN_CCTYPE_VARVAR is supported. The other types will be supported in future releases.

KN_VARTYPE

#define KN_VARTYPE_CONTINUOUS 0
#define KN_VARTYPE_INTEGER 1
#define KN_VARTYPE_BINARY 2

Possible values for the variable type (xTypes in KN_set_var_types()).

KN_VAR_

#define KN_VAR_LINEAR 1 /*-- LINEAR ONLY EVERYWHERE */

Possible values for enabling bits to set variable properties via KN_set_var_properties().

KN_OBJ_

#define KN_OBJ_CONVEX 1 /*-- CONVEX OBJECTIVE */
#define KN_OBJ_CONCAVE 2 /*-- CONCAVE OBJECTIVE */
#define KN_OBJ_CONTINUOUS 4 /*-- OBJECTIVE IS CONTINUOUS */
#define KN_OBJ_DIFFERENTIABLE 8 /*-- (ONCE) DIFFERENTIABLE OBJECTIVE */
#define KN_OBJ_TWICE_DIFFERENTIABLE 16 /*-- TWICE DIFFERENTIABLE OBJECTIVE */
#define KN_OBJ_NOISY 32 /*-- OBJECTIVE FUNCTION IS NOISY */
#define KN_OBJ_NONDETERMINISTIC 64 /*-- OBJECTIVE IS NONDETERMINISTIC */

Possible values for bit flags used to set objective function properties via KN_set_obj_properties().

3.5. Callable library API reference 207



Artelys Knitro Documentation, Release 11.0.0

KN_CON_

#define KN_CON_CONVEX 1 /*-- CONVEX CONSTRAINT */
#define KN_CON_CONCAVE 2 /*-- CONCAVE CONSTRAINT */
#define KN_CON_CONTINUOUS 4 /*-- CONSTRAINT IS CONTINUOUS */
#define KN_CON_DIFFERENTIABLE 8 /*-- (ONCE) DIFFERENTIABLE CONSTRAINT */
#define KN_CON_TWICE_DIFFERENTIABLE 16 /*-- TWICE DIFFERENTIABLE CONSTRAINT */
#define KN_CON_NOISY 32 /*-- CONSTRAINT FUNCTION IS NOISY */
#define KN_CON_NONDETERMINISTIC 64 /*-- CONSTRAINT IS NONDETERMINISTIC */

Possible values for bit flags used to set constraint function properties via KN_set_con_properties().

KN_DENSE

#define KN_DENSE -1 /*-- GENERIC DENSE (e.g. FOR ARRAYS) */
#define KN_DENSE_ROWMAJOR -2 /*-- DENSE MATRIX IN ROW MAJOR ORDER */
#define KN_DENSE_COLMAJOR -3 /*-- DENSE MATRIX IN COLUMN MAJOR ORDER */

Possible values for dense arrays or matrices.

KN_RC_

#define KN_RC_EVALFC 1 /*-- OBJECTIVE AND CONSTRAINT FUNCTIONS */
#define KN_RC_EVALGA 2 /*-- OBJ. GRADIENT AND CONSTRAINT JACOBIAN */
#define KN_RC_EVALH 3 /*-- HESSIAN OF THE LAGRANGIAN */
#define KN_RC_EVALHV 7 /*-- HESSIAN-VECTOR PRODUCT */
#define KN_RC_EVALH_NO_F 8 /*-- NO OBJECTIVE COMPONENT INCLUDED */
#define KN_RC_EVALHV_NO_F 9 /*-- NO OBJECTIVE COMPONENT INCLUDED */
#define KN_RC_EVALR 10 /*-- RESIDUAL FUNCTIONS (LEAST SQUARES) */
#define KN_RC_EVALRJ 11 /*-- RESIDUAL JACOBIAN (LEAST SQUARES) */
#define KN_RC_EVALFCGA 12 /*-- BOTH FUNCTIONS AND GRADIENTS */

Possible evaluation request codes for evaluation callbacks.

3.6 Return codes

The solution status return codes are organized as follows.

• 0: the final solution satisfies the termination conditions for verifying optimality.

• -100 to -199: a feasible approximate solution was found.

• -200 to -299: Knitro terminated at an infeasible point.

• -300: the problem was determined to be unbounded.

• -400 to -499: Knitro terminated because it reached a pre-defined limit (-40x codes indicate that a feasible point
was found before reaching the limit, while -41x codes indicate that no feasible point was found before reaching
the limit).

• -500 to -599: Knitro terminated with an input error or some non-standard error.

A more detailed description of individual return codes and their corresponding termination messages is provided
below.

KN_RC_OPTIMAL_OR_SATISFACTORY

#define KN_RC_OPTIMAL_OR_SATISFACTORY 0 /*-- OPTIMAL CODE */

208 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Locally optimal solution found. Knitro found a locally optimal point which satisfies the stopping criterion. If the
problem is convex (for example, a linear program), then this point corresponds to a globally optimal solution.

KN_RC_NEAR_OPT

#define KN_RC_NEAR_OPT -100 /*-- FEASIBLE CODES */

Primal feasible solution estimate cannot be improved. It appears to be optimal, but desired accuracy in dual
feasibility could not be achieved. No more progress can be made, but the stopping tests are close to being
satisfied (within a factor of 100) and so the current approximate solution is believed to be optimal.

KN_RC_FEAS_XTOL

#define KN_RC_FEAS_XTOL -101

Primal feasible solution; the optimization terminated because the relative change in the solution estimate is less
than that specified by the parameter xtol. To try to get more accuracy one may decrease xtol. If xtol
is very small already, it is an indication that no more significant progress can be made. It’s possible the ap-
proximate feasible solution is optimal, but perhaps the stopping tests cannot be satisfied because of degeneracy,
ill-conditioning or bad scaling.

KN_RC_FEAS_NO_IMPROVE

#define KN_RC_FEAS_NO_IMPROVE -102

Primal feasible solution estimate cannot be improved; desired accuracy in dual feasibility could not be achieved.
No further progress can be made. It’s possible the approximate feasible solution is optimal, but perhaps the
stopping tests cannot be satisfied because of degeneracy, ill-conditioning or bad scaling.

KN_RC_FEAS_FTOL

#define KN_RC_FEAS_FTOL -103

Primal feasible solution; the optimization terminated because the relative change in the objective function is less
than that specified by the parameter ftol for ftol_iters consecutive iterations. To try to get more accuracy
one may decrease ftol and/or increase ftol_iters. If ftol is very small already, it is an indication that
no more significant progress can be made. It’s possible the approximate feasible solution is optimal, but perhaps
the stopping tests cannot be satisfied because of degeneracy, ill-conditioning or bad scaling.

KN_RC_INFEASIBLE

#define KN_RC_INFEASIBLE -200 /*-- INFEASIBLE CODES */

Convergence to an infeasible point. Problem may be locally infeasible. If problem is believed to be feasible, try
multistart to search for feasible points. The algorithm has converged to an infeasible point from which it cannot
further decrease the infeasibility measure. This happens when the problem is infeasible, but may also occur
on occasion for feasible problems with nonlinear constraints or badly scaled problems. It is recommended to
try various initial points with the multi-start feature. If this occurs for a variety of initial points, it is likely the
problem is infeasible.

KN_RC_INFEAS_XTOL

3.6. Return codes 209



Artelys Knitro Documentation, Release 11.0.0

#define KN_RC_INFEAS_XTOL -201

Terminate at infeasible point because the relative change in the solution estimate is less than that specified by
the parameter xtol. To try to find a feasible point one may decrease xtol. If xtol is very small already, it is
an indication that no more significant progress can be made. It is recommended to try various initial points with
the multi-start feature. If this occurs for a variety of initial points, it is likely the problem is infeasible.

KN_RC_INFEAS_NO_IMPROVE

#define KN_RC_INFEAS_NO_IMPROVE -202

Current infeasible solution estimate cannot be improved. Problem may be badly scaled or perhaps infeasible.
If problem is believed to be feasible, try multistart to search for feasible points. If this occurs for a variety of
initial points, it is likely the problem is infeasible.

KN_RC_INFEAS_MULTISTART

#define KN_RC_INFEAS_MULTISTART -203

Multistart: no primal feasible point found. The multi-start feature was unable to find a feasible point. If the
problem is believed to be feasible, then increase the number of initial points tried in the multi-start feature and
also perhaps increase the range from which random initial points are chosen.

KN_RC_INFEAS_CON_BOUNDS

#define KN_RC_INFEAS_CON_BOUNDS -204

The constraint bounds have been determined to be infeasible.

KN_RC_INFEAS_VAR_BOUNDS

#define KN_RC_INFEAS_VAR_BOUNDS -205

The variable bounds have been determined to be infeasible.

KN_RC_UNBOUNDED

#define KN_RC_UNBOUNDED -300 /*-- UNBOUNDED CODE */

Problem appears to be unbounded. Iterate is feasible and objective magnitude is greater than objrange. The
objective function appears to be decreasing without bound, while satisfying the constraints. If the problem really
is bounded, increase the size of the parameter objrange to avoid terminating with this message.

KN_RC_ITER_LIMIT_FEAS

#define KN_RC_ITER_LIMIT_FEAS -400 /*-- LIMIT EXCEEDED CODES (FEASIBLE)
→˓*/

The iteration limit was reached before being able to satisfy the required stopping criteria. A feasible point was
found. The iteration limit can be increased through the user option maxit.

KN_RC_TIME_LIMIT_FEAS

210 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

#define KN_RC_TIME_LIMIT_FEAS -401

The time limit was reached before being able to satisfy the required stopping criteria. A feasible point was
found. The time limit can be increased through the user options maxtime_cpu and maxtime_real.

KN_RC_FEVAL_LIMIT_FEAS

#define KN_RC_FEVAL_LIMIT_FEAS -402

The function evaluation limit was reached before being able to satisfy the required stopping criteria. A feasible
point was found. The function evaluation limit can be increased through the user option maxfevals.

KN_RC_MIP_EXH_FEAS

#define KN_RC_MIP_EXH_FEAS -403

All nodes have been explored. An integer feasible point was found. The MIP optimality gap has not been
reduced below the specified threshold, but there are no more nodes to explore in the branch and bound tree. If
the problem is convex, this could occur if the gap tolerance is difficult to meet because of bad scaling or roundoff
errors, or there was a failure at one or more of the subproblem nodes. This might also occur if the problem is
nonconvex. In this case, Knitro terminates and returns the best integer feasible point found.

KN_RC_MIP_TERM_FEAS

#define KN_RC_MIP_TERM_FEAS -404

Terminating at first integer feasible point. Knitro has found an integer feasible point and is terminating because
the user option mip_terminate is set to “feasible”.

KN_RC_MIP_SOLVE_LIMIT_FEAS

#define KN_RC_MIP_SOLVE_LIMIT_FEAS -405

Subproblem solve limit reached. An integer feasible point was found. The MIP subproblem solve limit was
reached before being able to satisfy the optimality gap tolerance. The subproblem solve limit can be increased
through the user option mip_maxsolves.

KN_RC_MIP_NODE_LIMIT_FEAS

#define KN_RC_MIP_NODE_LIMIT_FEAS -406

Node limit reached. An integer feasible point was found. The MIP node limit was reached before being able to
satisfy the optimality gap tolerance. The node limit can be increased through the user option mip_maxnodes.

KN_RC_ITER_LIMIT_INFEAS

#define KN_RC_ITER_LIMIT_INFEAS -410 /*-- LIMIT EXCEEDED CODES
→˓(INFEASIBLE) */

The iteration limit was reached before being able to satisfy the required stopping criteria. No feasible point was
found. The iteration limit can be increased through the user option maxit.

3.6. Return codes 211



Artelys Knitro Documentation, Release 11.0.0

KN_RC_TIME_LIMIT_INFEAS

#define KN_RC_TIME_LIMIT_INFEAS -411

The time limit was reached before being able to satisfy the required stopping criteria. No feasible point was
found. The time limit can be increased through the user options maxtime_cpu and maxtime_real.

KN_RC_FEVAL_LIMIT_INFEAS

#define KN_RC_FEVAL_LIMIT_INFEAS -412

The function evaluation limit was reached before being able to satisfy the required stopping criteria. No feasible
point was found. The function evaluation limit can be increased through the user option maxfevals.

KN_RC_MIP_EXH_INFEAS

#define KN_RC_MIP_EXH_INFEAS -413

All nodes have been explored. No integer feasible point was found. The MIP optimality gap has not been
reduced below the specified threshold, but there are no more nodes to explore in the branch and bound tree. If
the problem is convex, this could occur if the gap tolerance is difficult to meet because of bad scaling or roundoff
errors, or there was a failure at one or more of the subproblem nodes. This might also occur if the problem is
nonconvex.

KN_RC_MIP_SOLVE_LIMIT_INFEAS

#define KN_RC_MIP_SOLVE_LIMIT_INFEAS -415

Subproblem solve limit reached. No integer feasible point was found. The MIP subproblem solve limit was
reached before being able to satisfy the optimality gap tolerance. The subproblem solve limit can be increased
through the user option mip_maxsolves.

KN_RC_MIP_NODE_LIMIT_INFEAS

#define KN_RC_MIP_NODE_LIMIT_INFEAS -416

Node limit reached. No integer feasible point was found. The MIP node limit was reached before being able to
satisfy the optimality gap tolerance. The node limit can be increased through the user option mip_maxnodes.

KN_RC_CALLBACK_ERR

#define KN_RC_CALLBACK_ERR -500 /*-- OTHER FAILURES */

Callback function error. This termination value indicates that an error (i.e., negative return value) occurred in a
user provided callback routine.

KN_RC_LP_SOLVER_ERR

#define KN_RC_LP_SOLVER_ERR -501

LP solver error. This termination value indicates that an unrecoverable error occurred in the LP solver used in
the active-set algorithm preventing the optimization from continuing.

212 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

KN_RC_EVAL_ERR

#define KN_RC_EVAL_ERR -502

Evaluation error. This termination value indicates that an evaluation error occurred (e.g., divide by 0, taking the
square root of a negative number), preventing the optimization from continuing.

KN_RC_OUT_OF_MEMORY

#define KN_RC_OUT_OF_MEMORY -503

Not enough memory available to solve problem. This termination value indicates that there was not enough
memory available to solve the problem.

KN_RC_USER_TERMINATION

#define KN_RC_USER_TERMINATION -504

Knitro has been terminated by the user.

Other codes

#define KN_RC_OPEN_FILE_ERR -505
#define KN_RC_BAD_N_OR_F -506 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_CONSTRAINT -507 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_JACOBIAN -508 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_HESSIAN -509 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_CON_INDEX -510 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_JAC_INDEX -511 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_HESS_INDEX -512 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_CON_BOUNDS -513 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_VAR_BOUNDS -514 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_ILLEGAL_CALL -515 /*-- KNITRO CALL IS OUT OF SEQUENCE */
#define KN_RC_BAD_KCPTR -516 /*-- KNITRO PASSED A BAD KC POINTER */
#define KN_RC_NULL_POINTER -517 /*-- KNITRO PASSED A NULL ARGUMENT */
#define KN_RC_BAD_INIT_VALUE -518 /*-- APPLICATION INITIAL POINT IS BAD */
#define KN_RC_LICENSE_ERROR -520 /*-- LICENSE CHECK FAILED */
#define KN_RC_BAD_PARAMINPUT -521 /*-- INVALID PARAMETER INPUT */
#define KN_RC_LINEAR_SOLVER_ERR -522 /*-- ERROR IN LINEAR SOLVER */
#define KN_RC_DERIV_CHECK_FAILED -523 /*-- DERIVATIVE CHECK FAILED */
#define KN_RC_DERIV_CHECK_TERMINATE -524 /*-- DERIVATIVE CHECK TERMINATE */
#define KN_RC_OVERFLOW_ERR -525 /*-- INTEGER OVERFLOW ERROR */
#define KN_RC_BAD_SIZE -526 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_VARIABLE -527 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_VAR_INDEX -528 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_OBJECTIVE -529 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_OBJ_INDEX -530 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_RESIDUAL -531 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_BAD_RSD_INDEX -532 /*-- PROBLEM DEFINITION ERROR */
#define KN_RC_INTERNAL_ERROR -600 /*-- CONTACT support-knitro@artelys.com */

Termination values in the range -505 to -600 imply some input error or other non-standard failure. If outlev>0,
details of this error will be printed to standard output or the file knitro.log depending on the value of outmode.

3.6. Return codes 213



Artelys Knitro Documentation, Release 11.0.0

3.7 Knitro user options

Knitro has a great number and variety of user option settings and although it tries to choose the best settings by default,
often significant performance improvements can be realized by choosing some non-default option settings.

Note: The hessopt user option cannnot be changed after calling KN_solve(). You must first call KN_free()
and then reload the model before changing hessopt and solving again.

Note: In the pre-Knitro 11.0 API, user option names begin with KTR_, instead of KN_.

3.7.1 Index

User options are defined in the knitro.h and summarized in the following index. To see a more detailed description
of an individual option and its possible values click on the option name. The importance of each option is related to
its category (General, Derivatives, etc...), 1 being the most important parameters.

General options

214 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Option name Impor-
tance

Purpose

algorithm 1 Indicates which algorithm to use to solve the problem
blasoption 2 Specifies the BLAS/LAPACK function library to use for basic vector and

matrix computations
blasoptionlib 3 Specifies a dynamic library name that contains object code for

BLAS/LAPACK functions
bndrange 3 Specifies max limits on the magnitude of constraint and variable bounds
cg_maxit 2 Determines the maximum allowable number of inner conjugate gradient

(CG) iterations
cg_pmem 3 Specifies number of nonzero elements per hessian column when

computing preconditioner
cg_precond 2 Specifies whether or not to apply preconditioning during CG iterations in

barrier algorithms
cg_stoptol 3 Relative stopping tolerance for CG subproblems
convex 1 Apply specializations/tunings often beneficial for convex models
datacheck 2 Specifies whether to perform more extensive data checks
delta 3 Specifies the initial trust region radius scaling factor
eval_fcga 3 Specifies that gradients are provided together with functions in one

callback
honorbnds 1 Indicates whether or not to enforce satisfaction of simple variable bounds
initpenalty 3 Initial penalty value used in Knitro merit function
linesearch_maxtrials3 Indicates the maximum allowable number of trial points during the

linesearch
linesearch 2 Indicates which linesearch strategy to use for the Interior/Direct or SQP

algorithm
linsolver_ooc 3 Indicates whether to use Intel MKL PARDISO out-of-core solve of linear

systems
linsolver 2 Indicates which linear solver to use to solve linear systems arising in

Knitro algorithms
linsolver_pivottol3 Specifies the initial pivot threshold used in factorization routines
objrange 3 Specifies the extreme limits of the objective function for purposes of

determining unboundedness
presolve_tol 3 Determines the tolerance used by the Knitro presolver
presolve 1 Determine whether or not to use the Knitro presolver
restarts 2 Specifies whether to enable automatic restarts
restarts_maxit 3 Maximum number of iterations before restarting when restarts are enabled
scale 1 Specifies whether to perform problem scaling
soc 3 Specifies whether or not to try second order corrections (SOC)

Derivatives options

3.7. Knitro user options 215



Artelys Knitro Documentation, Release 11.0.0

Option name Impor-
tance

Purpose

derivcheck 1 Determine whether or not to perform a derivative check on the model
derivcheck_terminate3 Determine whether or not to terminate after the derivative check
derivcheck_tol 3 Specifies the relative tolerance used for detecting derivative errors
derivcheck_type 3 Specifies whether to use forward or central finite differencing for the derivative

checker
gradopt 1 Specifies how to compute the gradients of the objective and constraint

functions
hessian_no_f 3 Determines whether or not to allow Knitro to request Hessian evaluations

without the objective component included.
hessopt 1 Specifies how to compute the (approximate) Hessian of the Lagrangian
lmsize 2 Specifies the number of limited memory pairs stored when approximating the

Hessian

Termination options

Option
name

Impor-
tance

Purpose

feastol 1 Specifies the final relative stopping tolerance for the feasibility error
feastol_abs1 Specifies the final absolute stopping tolerance for the feasibility error
fstopval 2 Used to implement a custom stopping condition based on the objective function value
ftol 2 The optimization process will terminate if feasible and the relative change in the

objective function is less than ftol
ftol_iters 3 Number of consecutive feasible iterations where the relative change in the objective

function is less than ftol before Knitro stops
infeastol 2 Specifies the (relative) tolerance used for declaring infeasibility of a model
maxfevals 2 Specifies the maximum number of function evaluations before termination.
maxit 1 Specifies the maximum number of iterations before termination
maxtime_cpu2 Specifies, in seconds, the maximum allowable CPU time before termination
maxtime_real1 Specifies, in seconds, the maximum allowable real time before termination
opttol 1 Specifies the final relative stopping tolerance for the KKT (optimality) error
opttol_abs 1 Specifies the final absolute stopping tolerance for the KKT (optimality) error
xtol 1 The optimization process will terminate if the relative change of the solution point

estimate is less than xtol
xtol_iters 3 Number of consecutive iterations where change of the solution point estimate is less

than xtol before Knitro stops

Barrier options

216 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Option name Impor-
tance

Purpose

bar_conic_enable1 Enable special treatments for conic constraints in the Interior/Direct algorithm
bar_directinterval1 Controls the maximum number of consecutive conjugate gradient (CG) steps
bar_feasible 1 Specifies whether special emphasis is placed on getting and staying feasible
bar_feasmodetol3 Specifies the tolerance in equation that determines whether Knitro will force

subsequent iterates to remain feasible
bar_initmu 2 Specifies the initial value for the barrier parameter 𝜇 used
bar_initpi_mpec3 Specifies the initial value for the MPEC penalty parameter 𝜋
bar_initpt 2 Indicates initial point strategy for x, slacks and multipliers
bar_maxcrossit 3 Specifies the maximum number of crossover iterations before termination
bar_maxrefactor3 Indicates the maximum number of refactorizations of the KKT system per

iteration
bar_murule 1 Indicates which strategy to use for modifying the barrier parameter 𝜇
bar_penaltycons2 Indicates whether a penalty approach is applied to the constraints
bar_penaltyrule3 Indicates which penalty parameter strategy to use for determining whether or not

to accept a trial iterate
bar_refinement 3 Specifies whether to try to refine the barrier solution for better precision
bar_relaxcons 2 Indicates whether a relaxation approach is applied to the constraints
bar_slackboundpush3 Indicates minimum amount by which initial slack variables are pushed inside the

bounds
bar_switchobj 3 Indicates objective function used when the barrier algorithms switch to a pure

feasibility phase
bar_switchrule 3 Indicates whether or not the barrier algorithms will allow switching from an

optimality phase to a pure feasibility phase
bar_watchdog 3 Specifies whether to enable watchdog heuristic

Active-set options

Option name Impor-
tance

Purpose

act_lpalg 3 Indicates which algorithm to use for linear programming (LP) subproblems (only
when using Cplex or Xpress)

act_lpfeastol3 Feasibility tolerance for the linear programming solver in the Knitro Active Set or
SQP algorithms

act_lppenalty1 Indicate whether to use penalty formulation for linear programming subproblems
act_lppresolve3 Controls presolve for linear programming subproblems
act_lpsolver 1 Indicates which linear programming solver the Knitro Active Set or SQP

algorithms use
act_parametric1 Solve parametric linear programming subproblems instead of standard LPs
act_qpalg 1 Indicates which algorithm to use to solve quadratic programming (QP)

subproblems
cplexlibname 3 Name of the Xpress library when act_lpsolver=KN_ACT_LPSOLVER_CPLEX
xpresslibname3 Name of the Xpress library when act_lpsolver=KN_ACT_LPSOLVER_XPRESS

MIP options

Option name Importance Purpose
mip_branchrule 1 Specifies which branching rule to use for MIP branch and bound procedure
mip_debug 2 Specifies debugging level for MIP solution
mip_gub_branch 3 Specifies whether or not to branch on generalized upper bounds (GUBs)
mip_heuristic 1 Specifies which MIP heuristic search approach to apply
mip_heuristic_maxit 2 Specifies the maximum number of iterations to allow for MIP heuristic

Continued on next page

3.7. Knitro user options 217



Artelys Knitro Documentation, Release 11.0.0

Table 3.5 – continued from previous page
Option name Importance Purpose
mip_heuristic_terminate 2 Specifies the condition for terminating the MIP heuristic
mip_implications 2 Specifies whether or not to add constraints to the MIP derived from logical implications
mip_integer_tol 3 Specifies the threshold for deciding whether or not a variable is determined to be an integer
mip_integral_gap_abs 1 The absolute integrality gap stop tolerance for MIP
mip_integral_gap_rel 1 The relative integrality gap stop tolerance for MIP
mip_intvar_strategy 2 Specifies how to handle integer variables
mip_knapsack 2 Specifies rules for adding MIP knapsack cuts
mip_lpalg 2 Specifies which algorithm to use for any linear programming (LP) subproblem solves
mip_maxnodes 2 Specifies the maximum number of nodes explored (0 means no limit)
mip_maxsolves 3 Specifies the maximum number of subproblem solves allowed (0 means no limit)
mip_maxtime_cpu 2 Specifies the maximum allowable CPU time in seconds for the complete MIP solution
mip_maxtime_real 1 Specifies the maximum allowable real time in seconds for the complete MIP solution
mip_method 1 Specifies which MIP method to use
mip_nodealg 1 Specifies which algorithm to use for standard node subproblem solves in MIP
mip_outinterval 1 Specifies node printing interval for mip_outlevel when mip_outlevel > 0
mip_outlevel 1 Specifies how much MIP information to print
mip_outsub 3 Specifies MIP subproblem solve debug output control
mip_pseudoinit 3 Specifies the method used to initialize pseudo-costs
mip_relaxable 2 Specifies whether integer variables are relaxable
mip_rootalg 2 Specifies which algorithm to use for the root node solve in MIP
mip_rounding 2 Specifies the MIP rounding rule to apply
mip_selectdir 2 Specifies the MIP node selection direction rule for choosing the next node in the branch and bound tree
mip_selectrule 1 Specifies the MIP select rule for choosing the next node in the branch and bound tree
mip_strong_candlim 3 Specifies the maximum number of candidates to explore for MIP strong branching
mip_strong_level 3 Specifies the maximum number of tree levels on which to perform MIP strong branching
mip_strong_maxit 3 Specifies the maximum number of iterations to allow for MIP strong branching solves
mip_terminate 1 Specifies conditions for terminating the MIP algorithm

Multi-algorithm options

Option name Impor-
tance

Purpose

ma_maxtime_cpu 3 Specifies the maximum allowable CPU time before termination for the
multi-algorithm procedure

ma_maxtime_real2 Specifies the maximum allowable real time before termination for the
multi-algorithm procedure

ma_outsub 1 Enable writing algorithm output to files for the multi-algorithm procedure
ma_terminate 1 Define the termination condition for the multi-algorithm procedure

Multistart options

218 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Option name Impor-
tance

Purpose

ms_deterministic2 Indicates whether Knitro multi-start procedure will be deterministic
ms_enable 1 Indicates whether Knitro will solve from multiple start points to find a better

local minimum
ms_maxbndrange 2 Specifies the maximum range that an unbounded variable can take when

determining new start points
ms_maxsolves 1 Specifies how many start points to try in multi-start
ms_maxtime_cpu 3 Specifies, in seconds, the maximum allowable CPU time before termination
ms_maxtime_real2 Specifies, in seconds, the maximum allowable real time before termination
ms_num_to_save 2 Specifies the number of distinct feasible points to save in a file named
ms_outsub 2 Enable writing algorithm output to files for the parallel multistart procedure
ms_savetol 2 Specifies the tolerance for deciding if two feasible points are distinct
ms_seed 2 Seed value used to generate random initial points in multi-start
ms_startptrange1 Specifies the maximum range that each variable can take when determining

new start points
ms_terminate 1 Specifies the condition for terminating multi-start
par_msnumthreads1 Specify the number of threads to use for multistart

Parallelism options

Option name Impor-
tance

Purpose

par_blasnumthreads2 Specify the number of threads to use for BLAS operations
par_concurrent_evals1 Determines whether or not function and derivative evaluations can take

place concurrently in parallel
par_lsnumthreads 2 Specify the number of threads to use for linear system solve operations
par_numthreads 1 Specify the number of threads to use for parallel (excluding BLAS)

computing features

Output options

Option name Impor-
tance

Purpose

debug 2 Controls the level of debugging output
newpoint 2 Specifies additional action to take after every iteration in a solve of a continuous

problem
out_csvinfo 3 Specifies whether to create knitro_solve.csv information file
out_csvname 3 Specify non-default filename when using out_csvinfo
out_hints 2 Print diagnostic hints (e.g. on user option settings) after solving
outappend 2 Specifies whether output should be started in a new file, or appended to existing

files
outdir 2 Specifies a single directory as the location to write all output files
outlev 1 Controls the level of output produced by Knitro
outmode 1 Specifies where to direct the output from Knitro
outname 2 Specify filename (default knitro.log) when directing output to a file via

outmode

Tuner options

3.7. Knitro user options 219



Artelys Knitro Documentation, Release 11.0.0

Option name Impor-
tance

Purpose

tuner 1 Indicates whether to invoke the Knitro-Tuner
tuner_maxtime_cpu2 Specifies the maximum allowable CPU time before terminating the

Knitro-Tuner
tuner_maxtime_real1 Specifies the maximum allowable real time before terminating the

Knitro-Tuner
tuner_optionsfile1 Can be used to specify the location of a Tuner options file
tuner_outsub 2 Enable writing additional Tuner subproblem solve output to files for the

Knitro-Tuner procedure
tuner_terminate 1 Define the termination condition for the Knitro-Tuner procedure

3.7.2 General options

algorithm

KN_PARAM_ALG

#define KN_PARAM_ALGORITHM 1003
#define KN_PARAM_ALG 1003
# define KN_ALG_AUTOMATIC 0
# define KN_ALG_AUTO 0
# define KN_ALG_BAR_DIRECT 1
# define KN_ALG_BAR_CG 2
# define KN_ALG_ACT_CG 3
# define KN_ALG_ACT_SQP 4
# define KN_ALG_MULTI 5

Indicates which algorithm to use to solve the problem

•0 (auto) let Knitro automatically choose an algorithm, based on the problem characteristics.

•1 (direct) use the Interior/Direct algorithm.

•2 (cg) use the Interior/CG algorithm.

•3 (active) use the Active Set algorithm.

•4 (sqp) use the SQP algorithm.

•5 (multi) run all algorithms, perhaps in parallel (see Algorithms).

Default value: 0

blasoption

KN_PARAM_BLASOPTION

#define KN_PARAM_BLASOPTION 1042
# define KN_BLASOPTION_KNITRO 0
# define KN_BLASOPTION_INTEL 1
# define KN_BLASOPTION_DYNAMIC 2

Specifies the BLAS/LAPACK function library to use for basic vector and matrix computations.

•0 (knitro) Use Knitro built-in functions.

•1 (intel) Use Intel Math Kernel Library (MKL) functions on available platforms.

220 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

•2 (dynamic) Use the dynamic library specified with option blasoptionlib.

Default value: 1

Note: BLAS and LAPACK functions from Intel Math Kernel Library (MKL) are provided with the Knitro distribu-
tion. Beginning with Knitro 8.1, the multi-threaded version of the MKL BLAS is included with Knitro. The number of
threads to use for the MKL BLAS are specified with par_blasnumthreads. On platforms, where the intel MKL
is not available, the Knitro built-in functions are used by default.

BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACKage) functions are used throughout
Knitro for fundamental vector and matrix calculations. The CPU time spent in these operations can be measured
by setting option debug = 1 and examining the output file kdbg_profile*.txt. Some optimization problems
are observed to spend very little CPU time in BLAS/LAPACK operations, while others spend more than 50%. Be
aware that the different function implementations can return slightly different answers due to roundoff errors in double
precision arithmetic. Thus, changing the value of blasoption sometimes alters the iterates generated by Knitro, or
even the final solution point.

The Knitro option uses built-in BLAS/LAPACK functions based on standard netlib routines (www.netlib.org). The
intel option uses MKL functions written especially for x86 and x86_64 processor architectures. On a machine running
an Intel processor (e.g., Pentium 4), testing indicates that the MKL functions can significantly reduce the CPU time
in BLAS/LAPACK operations. The dynamic option allows users to load any library that implements the functions
declared in the file include/blas_lapack.h. Specify the library name with option blasoptionlib.

Some Intel MKL libraries may be provided in the Knitro lib directory and may need to be loaded at runtime by Knitro.
If so, the operating system’s load path must be configured to find this directory or the MKL will fail to load.

blasoptionlib

KN_PARAM_BLASOPTIONLIB

#define KN_PARAM_BLASOPTIONLIB 1045

Specifies a dynamic library name that contains object code for BLAS/LAPACK functions.

The library must implement all the functions declared in the file include/blas_lapack.h.

Note: This option has no effect unless blasoption = 2.

bndrange

KN_PARAM_BNDRANGE

#define KN_PARAM_BNDRANGE 1112

Specifies max limits on the magnitude of constraint and variable bounds. Any constraint or variable bounds
whose magnitude is greater than or equal to bndrange will be treated as infinite by Knitro. Using very large,
finite bounds is discouraged (and is generally an indication of a poorly scaled model).

Default value: 1.0e20

cg_maxit

KN_PARAM_CG_MAXIT

3.7. Knitro user options 221



Artelys Knitro Documentation, Release 11.0.0

#define KN_PARAM_CG_MAXIT 1013

Determines the maximum allowable number of inner conjugate gradient (CG) iterations per Knitro minor itera-
tion.

•0 Let Knitro automatically choose a value based on the problem size.

•n At most n>0 CG iterations may be performed during one minor iteration of Knitro.

Default value: 0

cg_pmem

KN_PARAM_CG_PMEM

#define KN_PARAM_CG_PMEM 1103

Specifies the amount of nonzero elements per column of the Hessian of the Lagrangian which are retained when
computing the incomplete Cholesky preconditioner.

•n At most n>0 nonzero elements per column.

Default value: 10

cg_precond

KN_PARAM_CG_PRECOND

#define KN_PARAM_CG_PRECOND 1041
# define KN_CG_PRECOND_NONE 0
# define KN_CG_PRECOND_CHOL 1

Specifies whether an incomplete Cholesky preconditioner is applied during CG iterations in barrier algorithms.

•0 (no) Not applied.

•1 (chol) Preconditioner is applied.

Default value: 0

cg_stoptol

KN_PARAM_CG_STOPTOL

#define KN_PARAM_CG_STOPTOL 1099

Specifies the relative stopping tolerance used for the conjugate gradient (CG) subproblem solves.

Default value: 1.0e-2

convex

KN_PARAM_CONVEX

#define KN_PARAM_CONVEX 1114
# define KN_CONVEX_AUTO 0
# define KN_CONVEX_YES 1

222 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Declare the problem as convex by setting KN_CONVEX_YES. Otherwise, Knitro will try to determine this
automatically, but may only be able to do so for simple model forms. If your model is convex, setting this option
to KN_CONVEX_YES will cause Knitro to apply specializations and tunings that are often beneficial for convex
models to speed up the solution. Currently this option is only active for the Interior/Direct algorithm, but may
be applied to other algorithms in the future.

Default value: 0

KN_PARAM_DATACHECK

#define KN_PARAM_DATACHECK 1087
# define KN_DATACHECK_NO 0
# define KN_DATACHECK_YES 1

Specifies whether to perform more extensive data checks to look for errors in the problem input to Knitro (in
particular, this option looks for errors in the sparse Jacobian and/or sparse Hessian structure). The datacheck
may have a non-trivial cost for large problems. It is turned on by default, but can be turned off for improved
speed.

Default value: 1

delta

KN_PARAM_DELTA

#define KN_PARAM_DELTA 1020

Specifies the initial trust region radius scaling factor used to determine the initial trust region size.

Default value: 1.0e0

eval_fcga

KN_PARAM_EVAL_FCGA

#define KN_PARAM_EVAL_FCGA 1116
# define KN_EVAL_FCGA_NO 0
# define KN_EVAL_FCGA_YES 1

Use this option to tell Knitro that you are providing the first derivatives (i.e. gradients) in the same callback
routine used for your function evaluations.

Default value: 0

honorbnds

KN_PARAM_HONORBNDS

#define KN_PARAM_HONORBNDS 1002
# define KN_HONORBNDS_NO 0
# define KN_HONORBNDS_ALWAYS 1
# define KN_HONORBNDS_INITPT 2

Indicates whether or not to enforce satisfaction of simple variable bounds throughout the optimization. The
API function KN_set_var_honorbnds() can be used to set this option for each variable individually. This
option and the bar_feasible option may be useful in applications where functions are undefined outside the
region defined by inequalities.

3.7. Knitro user options 223



Artelys Knitro Documentation, Release 11.0.0

•0 (no) Knitro does not require that the bounds on the variables be satisfied at intermediate iterates.

•1 (always) Knitro enforces that the initial point and all subsequent solution estimates satisfy the bounds on
the variables.

•2 (initpt) Knitro enforces that the initial point satisfies the bounds on the variables.

Default value: 2

initpenalty

KN_PARAM_INITPENALTY

#define KN_PARAM_INITPENALTY 1097

Specifies the initial penalty parameter used in the Knitro merit functions. The Knitro merit functions are used
to balance improvements in the objective function versus improvements in feasibility. A larger initial penalty
value places more weight initially on feasibility in the merit function.

Default value: 1.0e1

linesearch

KN_PARAM_LINESEARCH

#define KN_PARAM_LINESEARCH 1095
# define KN_LINESEARCH_AUTO 0
# define KN_LINESEARCH_BACKTRACK 1
# define KN_LINESEARCH_INTERPOLATE 2

Indicates which linesearch strategy to use for the Interior/Direct or SQP algorithm to search for a new acceptable
iterate. This option has no effect on the Interior/CG or Active Set algorithm.

•0 (auto) Let Knitro automatically choose the strategy.

•1 (backtrack) Use a simple backtracking scheme.

•2 (interpolate) Use a cubic interpolation scheme.

Default value: 0

linesearch_maxtrials

KN_PARAM_LINESEARCH_MAXTRIALS

#define KN_PARAM_LINESEARCH_MAXTRIALS 1044

Indicates the maximum allowable number of trial points during the linesearch of the Interior/Direct or SQP
algorithm before treating the linesearch step as a failure and generating a new step.

This option has no effect on the Interior/CG or Active Set algorithm.

Default value: 3

linsolver

KN_PARAM_LINSOLVER

224 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

#define KN_PARAM_LINSOLVER 1057
# define KN_LINSOLVER_AUTO 0
# define KN_LINSOLVER_INTERNAL 1
# define KN_LINSOLVER_HYBRID 2
# define KN_LINSOLVER_DENSEQR 3
# define KN_LINSOLVER_MA27 4
# define KN_LINSOLVER_MA57 5
# define KN_LINSOLVER_MKLPARDISO 6
# define KN_LINSOLVER_MA97 7
# define KN_LINSOLVER_MA86 8

Indicates which linear solver to use to solve linear systems arising in Knitro algorithms.

•0 (auto) Let Knitro automatically choose the linear solver.

•1 (internal) Not currently used; reserved for future use. Same as auto for now.

•2 (hybrid) Use a hybrid approach where the solver chosen depends on the particular linear system which
needs to be solved.

•3 (qr) Use a dense QR method. This approach uses LAPACK QR routines. Since it uses a dense method,
it is only efficient for small problems. It may often be the most efficient method for small problems with
dense Jacobians or Hessian matrices.

•4 (ma27) Use the HSL MA27 sparse symmetric indefinite solver.

•5 (ma57) Use the HSL MA57 sparse symmetric indefinite solver.

•6 (mklpardiso) Use the Intel MKL PARDISO (parallel, deterministic) sparse symmetric indefinite solver.

•7 (ma97) Use the HSL MA97 (parallel, deterministic) sparse symmetric indefinite solver.

•8 (ma86) Use the HSL MA86 (parallel, non-deterministic) sparse symmetric indefinite solver.

Default value: 0

Note: The QR linear solver, the HSL MA57/MA86/MA97 linear solvers and the Intel MKL PARDISO solver all make
frequent use of Basic Linear Algebra Subroutines (BLAS) for internal linear algebra operations. If using any of these it
is highly recommended to use optimized BLAS for your particular machine. This can result in dramatic speedup. This
BLAS library is optimized for Intel processors and can be selected by setting blasoption=intel. Please read the notes
under the blasoption user option in this section for more details about the BLAS options in Knitro and how to make
sure that the Intel MKL BLAS or other user-specified BLAS can be used by Knitro. You may also achieve speedups
using multi-threaded BLAS with these solvers by setting par_numthreads>1 or par_blasnumthreads>1
when using the solvers.

Additionally, the HSL solvers MA86 and MA97 and the Intel MKL PARDISO solver are specifically designed
to exploit parallelism (beyond BLAS parallelism) to achieve speedups on large problems. You may try setting
par_numthreads>1 or par_lsnumthreads>1 (with par_blasnumthreads =1) when using these solvers,
to obtain greater speedups.

linsolver_ooc

KN_PARAM_LINSOLVER_OOC

#define KN_PARAM_LINSOLVER_OOC 1076
# define KN_LINSOLVER_OOC_NO 0
# define KN_LINSOLVER_OOC_MAYBE 1
# define KN_LINSOLVER_OOC_YES 2

3.7. Knitro user options 225



Artelys Knitro Documentation, Release 11.0.0

Indicates whether to use Intel MKL PARDISO out-of-core solve of linear systems when linsolver = mkl-
pardiso.

This option is only active when linsolver = mklpardiso.

•0 (no) Do not use Intel MKL PARDISO out-of-core option.

•1 (maybe) Maybe solve out-of-core depending on how much space is needed.

•2 (yes) Solve linear systems out-of-core when using Intel MKL PARDISO.

Default value: 0

Note: See the Intel MKL PARDISO documentation for more details on how this option works.

linsolver_pivottol

KN_PARAM_LINSOLVER_PIVOTTOL

#define KN_PARAM_LINSOLVER_PIVOTTOL 1029

Specifies the initial pivot threshold used in factorization routines.

The value should be in the range [0, ..., 0.5] with higher values resulting in more pivoting (more sta-
ble factorizations). Values less than 0 will be set to 0 and values larger than 0.5 will be set to 0.5. If
linsolver_pivottol is non-positive, initially no pivoting will be performed. Smaller values may im-
prove the speed of the code but higher values are recommended for more stability (for example, if the problem
appears to be very ill-conditioned).

Default value: 1.0e-8

objrange

KN_PARAM_OBJRANGE

#define KN_PARAM_OBJRANGE 1026

Specifies the extreme limits of the objective function for purposes of determining unboundedness.

If the magnitude of the objective function becomes greater than objrange for a feasible iterate, then the
problem is determined to be unbounded and Knitro proceeds no further.

Default value: 1.0e20

presolve

KN_PARAM_PRESOLVE

#define KN_PARAM_PRESOLVE 1059
# define KN_PRESOLVE_NONE 0
# define KN_PRESOLVE_BASIC 1

Determine whether or not to use the Knitro presolver to try to simplify the model by removing variables or
constraints.

•0 (none) Do not use Knitro presolver.

•1 (basic) Use the Knitro basic presolver.

226 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Default value: 1

presolve_tol

KN_PARAM_PRESOLVE_TOL

#define KN_PARAM_PRESOLVE_TOL 1060

Determines the tolerance used by the Knitro presolver to remove variables and constraints from the model. If
you believe the Knitro presolver is incorrectly modifying the model, use a smaller value for this tolerance (or
turn the presolver off).

Default value: 1.0e-6

restarts

KN_PARAM_RESTARTS

#define KN_PARAM_RESTARTS 1100

Specifies whether or not to enable automatic restarts in Knitro. When enabled, if a Knitro algorithm seems to be
converging slowly or not converging, the algorithm will automatically restart, which may help with convergence.

•0 No automatic restarts allowed.

•n At most n>0 automatic restarts may be performed.

Default value: 0

restarts_maxit

KN_PARAM_RESTARTS_MAXIT

#define KN_PARAM_RESTARTS_MAXIT 1101

When restarts are enabled, this option can be used to specify a maximum number of iterations before enforcing
a restart.

•0 No iteration limit on restarts enforced.

•n At most n>0 iterations are allowed without convergence before enforcing an automatic restart, if restarts
are enabled.

Default value: 0

scale

KN_PARAM_SCALE

#define KN_PARAM_SCALE 1017
# define KN_SCALE_NEVER 0
# define KN_SCALE_NO 0
# define KN_SCALE_USER_INTERNAL 1
# define KN_SCALE_USER_NONE 2
# define KN_SCALE_INTERNAL 3

Specifies whether to perform problem scaling of the objective function, constraint functions, or possibly vari-
ables.

3.7. Knitro user options 227



Artelys Knitro Documentation, Release 11.0.0

If scaling is performed, internal computations, including some aspects of the optimality tests, are based on the
scaled values, though the feasibility error is always computed in terms of the original, unscaled values.

•0 (no) No scaling is performed.

•1 (user_internal) User provided scaling is used if defined, otherwise Knitro internal scaling is applied.

•2 (user_none) User provided scaling is used if defined, otherwise no scaling is applied.

•3 (internal) Knitro internal scaling is applied.

Default value: 1

soc

KN_PARAM_SOC

#define KN_PARAM_SOC 1019
# define KN_SOC_NO 0
# define KN_SOC_MAYBE 1
# define KN_SOC_YES 2

Specifies whether or not to try second order corrections (SOC).

A second order correction may be beneficial for problems with highly nonlinear constraints.

•0 (no) No second order correction steps are attempted.

•1 (maybe) Second order correction steps may be attempted on some iterations.

•2 (yes) Second order correction steps are always attempted if the original step is rejected and there are
nonlinear constraints.

Default value: 1

3.7.3 Derivatives options

derivcheck

KN_PARAM_DERIVCHECK

#define KN_PARAM_DERIVCHECK 1080
# define KN_DERIVCHECK_NONE 0
# define KN_DERIVCHECK_FIRST 1
# define KN_DERIVCHECK_SECOND 2
# define KN_DERIVCHECK_ALL 3

Determine whether or not to perform a derivative check on the model.

•0 (none) Do not perform a derivative check.

•1 (first) Check first derivatives only.

•2 (second) Check second derivatives (i.e. the Hessian) only.

•3 (all) Check both first and second derivatives.

Default value: 0

derivcheck_terminate

228 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

KN_PARAM_DERIVCHECK_TERMINATE

#define KN_PARAM_DERIVCHECK_TERMINATE 1088
# define KN_DERIVCHECK_STOPERROR 1
# define KN_DERIVCHECK_STOPALWAYS 2

Determine whether to always terminate after the derivative check or only when the derivative checker detects a
possible error.

•1 (error) Terminate only when an error is detected.

•2 (always) Always terminate when the derivative check is finished.

Default value: 1

derivcheck_tol

KN_PARAM_DERIVCHECK_TOL

#define KN_PARAM_DERIVCHECK_TOL 1082

Specifies the relative tolerance used for detecting derivative errors, when the Knitro derivative checker is en-
abled.

Default value: 1.0e-6

derivcheck_type

KN_PARAM_DERIVCHECK_TYPE

#define KN_PARAM_DERIVCHECK_TYPE 1081
# define KN_DERIVCHECK_FORWARD 1
# define KN_DERIVCHECK_CENTRAL 2

Specifies whether to use forward or central finite differencing for the derivative checker when it is enabled.

•1 (forward) Use forward finite differencing for the derivative checker.

•2 (central) Use central finite differencing for the derivative checker.

Default value: 1

gradopt

KN_PARAM_GRADOPT

#define KN_PARAM_GRADOPT 1007
# define KN_GRADOPT_EXACT 1
# define KN_GRADOPT_FORWARD 2
# define KN_GRADOPT_CENTRAL 3

Specifies how to compute the gradients of the objective and constraint functions.

•1 (exact) User provides a routine for computing the exact gradients.

•2 (forward) Knitro computes gradients by forward finite differences.

•3 (central) Knitro computes gradients by central finite differences.

Default value: 1

3.7. Knitro user options 229



Artelys Knitro Documentation, Release 11.0.0

Note: It is highly recommended to provide exact gradients if at all possible as this greatly impacts the performance
of the code.

hessian_no_f

KN_PARAM_HESSIAN_NO_F

#define KN_PARAM_HESSIAN_NO_F 1062
# define KN_HESSIAN_NO_F_FORBID 0
# define KN_HESSIAN_NO_F_ALLOW 1

Determines whether or not to allow Knitro to request Hessian (or Hessian-vector product) evaluations with-
out the objective component included. If hessian_no_f=0, Knitro will only ask the user for the stan-
dard Hessian and will internally approximate the Hessian without the objective component when it is needed.
When hessian_no_f=1, Knitro will provide a flag to the user EVALH_NO_F (or EVALHV_NO_F) when
it wants an evaluation of the Hessian (or Hessian-vector product) without the objective component. Using
hessian_no_f=1 (and providing the appropriate Hessian) may improve Knitro performance on some prob-
lems.

This option only has an effect when hessopt=1 (i.e. user-provided exact Hessians), or hessopt=5 (i.e.
user-provided exact Hessians-vector products).

•0 (forbid) Knitro will not ask for Hessian evaluations without the objective component.

•1 (allow) Knitro may ask for Hessian evaluations without the objective component.

Default value: 0

hessopt

KN_PARAM_HESSOPT

#define KN_PARAM_HESSOPT 1008
# define KN_HESSOPT_EXACT 1
# define KN_HESSOPT_BFGS 2
# define KN_HESSOPT_SR1 3
# define KN_HESSOPT_PRODUCT_FINDIFF 4
# define KN_HESSOPT_PRODUCT 5
# define KN_HESSOPT_LBFGS 6
# define KN_HESSOPT_GAUSS_NEWTON 7

Specifies how to compute the (approximate) Hessian of the Lagrangian.

•1 (exact) User provides a routine for computing the exact Hessian.

•2 (bfgs) Knitro computes a (dense) quasi-Newton BFGS Hessian.

•3 (sr1) Knitro computes a (dense) quasi-Newton SR1 Hessian.

•4 (product_findiff) Knitro computes Hessian-vector products using finite-differences.

•5 (product) User provides a routine to compute the Hessian-vector products.

•6 (lbfgs) Knitro computes a limited-memory quasi-Newton BFGS Hessian (its size is determined by the
option lmsize).

•7 (gauss_newton) Knitro computes a Gauss-Newton approximation of the hessian (available for least-
squares only, and default value for least-squares)

230 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Default value: 1

Note: Options hessopt = 4 and hessopt = 5 are not available with the Interior/Direct or SQP algorithms.

Knitro usually performs best when the user provides exact Hessians (hessopt = 1) or exact Hessian-vector products
(hessopt = 5). If neither can be provided but exact gradients are available (i.e., gradopt = 1), then hessopt =
4 may be a good option. This option is comparable in terms of robustness to the exact Hessian option and typically
not much slower in terms of time, provided that gradient evaluations are not a dominant cost. However, this option
is only available for some algorithms. If exact gradients cannot be provided, then one of the quasi-Newton options
is preferred. Options hessopt = 2 and hessopt = 3 are only recommended for small problems (say, n < 1000)
since they require working with a dense Hessian approximation. Note that with these last two options, the Hessian
pattern will be ignored since Knitro computes a dense approximation. Option hessopt = 6 should be used for large
problems.

lmsize

KN_PARAM_LMSIZE

#define KN_PARAM_LMSIZE 1038

Specifies the number of limited memory pairs stored when approximating the Hessian using the limited-memory
quasi-Newton BFGS option. The value must be between 1 and 100 and is only used with hessopt = 6.

Larger values may give a more accurate, but more expensive, Hessian approximation. Smaller values may
give a less accurate, but faster, Hessian approximation. When using the limited memory BFGS approach it is
recommended to experiment with different values of this parameter.

Default value: 10

3.7.4 Termination options

feastol

KN_PARAM_FEASTOL

#define KN_PARAM_FEASTOL 1022

Specifies the final relative stopping tolerance for the feasibility error.

Smaller values of feastol result in a higher degree of accuracy in the solution with respect to feasibility.

Default value: 1.0e-6

feastol_abs

KN_PARAM_FEASTOLABS

#define KN_PARAM_FEASTOLABS 1023

Specifies the final absolute stopping tolerance for the feasibility error. Smaller values of feastol_abs result
in a higher degree of accuracy in the solution with respect to feasibility.

Default value: 1.0e-3

fstopval

3.7. Knitro user options 231



Artelys Knitro Documentation, Release 11.0.0

KN_PARAM_FSTOPVAL

#define KN_PARAM_FSTOPVAL 1086

Used to implement a custom stopping condition based on the objective function value. Knitro will stop and
declare that a satisfactory solution was found if a feasible objective function value at least as good as the
value specified by fstopval is achieved. This stopping condition is only active when the absolute value
of fstopval is less than objrange.

Default value: KN_INFINITY

ftol

KN_PARAM_FTOL

#define KN_PARAM_FTOL 1090

The optimization process will terminate if the relative change in the objective function is less than ftol for
ftol_iters consecutive feasible iterations.

Default value: 1.0e-15

ftol_iters

KN_PARAM_FTOL_ITERS

#define KN_PARAM_FTOL_ITERS 1091

The optimization process will terminate if the relative change in the objective function is less than ftol for
ftol_iters consecutive feasible iterations.

Default value: 5

infeastol

KN_PARAM_INFEASTOL

#define KN_PARAM_INFEASTOL 1056

Specifies the (relative) tolerance used for declaring infeasibility of a model.

Smaller values of infeastol make it more difficult to satisfy the conditions Knitro uses for detecting infea-
sible models. If you believe Knitro incorrectly declares a model to be infeasible, then you should try a smaller
value for infeastol.

Default value: 1.0e-8

maxfevals

KN_PARAM_MAXFEVALS

#define KN_PARAM_MAXFEVALS 1085

Specifies the maximum number of function evaluations before termination. Values less than zero imply no limit.

Default value: -1 (unlimited)

maxit

232 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

KN_PARAM_MAXIT

#define KN_PARAM_MAXIT 1014

Specifies the maximum number of iterations before termination.

•0 Let Knitro automatically choose a value based on the problem type. Currently Knitro sets this value to
10000 for LPs/NLPs and 3000 for MIP problems.

•n At most n>0 iterations may be performed before terminating.

Default value: 0

maxtime_cpu

KN_PARAM_MAXTIMECPU

#define KN_PARAM_MAXTIMECPU 1024

Specifies, in seconds, the maximum allowable CPU time before termination.

Default value: 1.0e8

maxtime_real

KN_PARAM_MAXTIMEREAL

#define KN_PARAM_MAXTIMEREAL 1040

Specifies, in seconds, the maximum allowable real time before termination.

Default value: 1.0e8

opttol

KN_PARAM_OPTTOL

#define KN_PARAM_OPTTOL 1027

Specifies the final relative stopping tolerance for the KKT (optimality) error.

Smaller values of opttol result in a higher degree of accuracy in the solution with respect to optimality.

Default value: 1.0e-6

opttol_abs

KN_PARAM_OPTTOLABS

#define KN_PARAM_OPTTOLABS 1028

Specifies the final absolute stopping tolerance for the KKT (optimality) error.

Smaller values of opttol_abs result in a higher degree of accuracy in the solution with respect to optimality.

Default value: 1.0e-3

xtol

3.7. Knitro user options 233



Artelys Knitro Documentation, Release 11.0.0

KN_PARAM_XTOL

#define KN_PARAM_XTOL 1030

The optimization process will terminate if the relative change in all components of the solution point estimate is
less than xtol for xtol_iters. consecutive iterations. If using the Interior/Direct or Interior/CG algorithm
and the barrier parameter is still large, Knitro will first try decreasing the barrier parameter before terminating.

Default value: 1.0e-12

xtol_iters

KN_PARAM_XTOL_ITERS

#define KN_PARAM_XTOL_ITERS 1094

The optimization process will terminate if the relative change in the solution estimate is less than xtol for
xtol_iters consecutive iterations. If set to 0, Knitro chooses this value based on the solver and context.
Currently Knitro sets this value to 3 unless the MISQP algorithm is being used, in which case the value is set to
1 by default.

Default value: 0

3.7.5 Barrier options

bar_conic_enable

KN_PARAM_BAR_CONIC_ENABLE

#define KN_PARAM_BAR_CONIC_ENABLE 1113
# define KN_BAR_CONIC_ENABLE_NONE 0
# define KN_BAR_CONIC_ENABLE_SOC 1

Enable special treatments for conic constraints when using the Interior/Direct algorithm (has no affect when
using the Interior/CG algorithm).

•0 (none) Do not apply any special treatment for conic constraints.

•1 (soc) Apply special treatments for any Second Order Cone (SOC) constraints identified in the model.

Default value: 0

bar_directinterval

KN_PARAM_BAR_DIRECTINTERVAL

#define KN_PARAM_BAR_DIRECTINTERVAL 1058

Controls the maximum number of consecutive conjugate gradient (CG) steps before Knitro will try to enforce
that a step is taken using direct linear algebra.

This option is only valid for the Interior/Direct algorithm and may be useful on problems where Knitro appears
to be taking lots of conjugate gradient steps. Setting bar_directinterval to 0 will try to enforce that only
direct steps are taken which may produce better results on some problems.

Default value: 10

234 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

bar_feasible

KN_PARAM_BAR_FEASIBLE

#define KN_PARAM_BAR_FEASIBLE 1006
# define KN_BAR_FEASIBLE_NO 0
# define KN_BAR_FEASIBLE_STAY 1
# define KN_BAR_FEASIBLE_GET 2
# define KN_BAR_FEASIBLE_GET_STAY 3

Specifies whether special emphasis is placed on getting and staying feasible in the interior-point algorithms.

•0 (no) No special emphasis on feasibility.

•1 (stay) Iterates must satisfy inequality constraints once they become sufficiently feasible.

•2 (get) Special emphasis is placed on getting feasible before trying to optimize.

•3 (get_stay) Implement both options 1 and 2 above.

Default value: 0

Note: This option can only be used with the Interior/Direct and Interior/CG algorithms.

If bar_feasible = stay or bar_feasible = get_stay, this will activate the feasible version of Knitro. The
feasible version of Knitro will force iterates to strictly satisfy inequalities, but does not require satisfaction of
equality constraints at intermediate iterates. This option and the honorbnds option may be useful in applications
where functions are undefined outside the region defined by inequalities. The initial point must satisfy inequal-
ities to a sufficient degree; if not, Knitro may generate infeasible iterates and does not switch to the feasible
version until a sufficiently feasible point is found. Sufficient satisfaction occurs at a point x if it is true for all
inequalities that

𝑐𝑙 + 𝑡𝑜𝑙 ≤ 𝑐(𝑥) ≤ 𝑐𝑢− 𝑡𝑜𝑙

The constant tol is determined by the option bar_feasmodetol.

If bar_feasible = get or bar_feasible = get_stay, Knitro will place special emphasis on first trying to
get feasible before trying to optimize.

bar_feasmodetol

KN_PARAM_BAR_FEASMODETOL

#define KN_PARAM_BAR_FEASMODETOL 1021

Specifies the tolerance in equation that determines whether Knitro will force subsequent iterates to remain
feasible.

The tolerance applies to all inequality constraints in the problem. This option only has an effect if option
bar_feasible = stay or bar_feasible = get_stay.

Default value: 1.0e-4

bar_initmu

KN_PARAM_BAR_INITMU

3.7. Knitro user options 235



Artelys Knitro Documentation, Release 11.0.0

#define KN_PARAM_BAR_INITMU 1025

Specifies the initial value for the barrier parameter 𝜇 used with the barrier algorithms.

This option has no effect on the Active Set algorithm.

Default value: 1.0e-1

bar_initpi_mpec

KN_PARAM_BAR_INITPI_MPEC

#define KN_PARAM_BAR_INITPI_MPEC 1093

Specifies the initial value for the MPEC penalty parameter 𝜋 used when solving problems with complementarity
constraints using the barrier algorithms. If this value is non-positive, then Knitro uses an internal formula to
initialize the MPEC penalty parameter.

Default value: 0.0

bar_initpt

KN_PARAM_BAR_INITPT

#define KN_PARAM_BAR_INITPT 1009
# define KN_BAR_INITPT_AUTO 0
# define KN_BAR_INITPT_CONVEX 1
# define KN_BAR_INITPT_NEARBND 2
# define KN_BAR_INITPT_CENTRAL 3

Indicates initial point strategy for x, slacks and multipliers when using a barrier algorithm. Note, this option
only alters the initial x values if the user does not specify an initial x.

This option has no effect on the Active Set algorithm.

•0 (auto) Let Knitro automatically choose the strategy.

•1 (convex) Initialization designed for convex models.

•2 (nearbnd) Initialization strategy that stays closer to the bounds.

•3 (central) Initialization strategy that is more central on double-bounded variables.

Default value: 0

bar_maxcrossit

KN_PARAM_BAR_MAXCROSSIT

#define KN_PARAM_BAR_MAXCROSSIT 1039

Specifies the maximum number of crossover iterations before termination.

If the value is positive and the algorithm in operation is Interior/Direct or Interior/CG, then Knitro will
crossover to the Active Set algorithm near the solution. The Active Set algorithm will then perform at most
bar_maxcrossit iterations to get a more exact solution. If the value is 0, no Active Set crossover occurs
and the interior-point solution is the final result.

If Active Set crossover is unable to improve the approximate interior-point solution, then Knitro will restore the
interior-point solution. In some cases (especially on large-scale problems or difficult degenerate problems) the

236 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

cost of the crossover procedure may be significant – for this reason, crossover is disabled by default. Enabling
crossover generally provides a more accurate solution than Interior/Direct or Interior/CG.

Default value: 0

bar_maxrefactor

KN_PARAM_BAR_MAXREFACTOR

#define KN_PARAM_BAR_MAXREFACTOR 1043

Indicates the maximum number of refactorizations of the KKT system per iteration of the Interior/Direct algo-
rithm before reverting to a CG step. If this value is set to -1, it will use a dynamic strategy.

These refactorizations are performed if negative curvature is detected in the model. Rather than reverting to a
CG step, the Hessian matrix is modified in an attempt to make the subproblem convex and then the KKT system
is refactorized. Increasing this value will make the Interior/Direct algorithm less likely to take CG steps. If the
Interior/Direct algorithm is taking a large number of CG steps (as indicated by a positive value for “CGits” in
the output), this may improve performance. This option has no effect on the Active Set algorithm.

Default value: -1

bar_murule

KN_PARAM_BAR_MURULE

#define KN_PARAM_BAR_MURULE 1004
# define KN_BAR_MURULE_AUTOMATIC 0
# define KN_BAR_MURULE_AUTO 0
# define KN_BAR_MURULE_MONOTONE 1
# define KN_BAR_MURULE_ADAPTIVE 2
# define KN_BAR_MURULE_PROBING 3
# define KN_BAR_MURULE_DAMPMPC 4
# define KN_BAR_MURULE_FULLMPC 5
# define KN_BAR_MURULE_QUALITY 6

Indicates which strategy to use for modifying the barrier parameter 𝑚𝑢 in the barrier algorithms.

Not all strategies are available for both barrier algorithms, as described below. This option has no effect on the
Active Set algorithm.

•0 (auto) Let Knitro automatically choose the strategy.

•1 (monotone) Monotonically decrease the barrier parameter. Available for both barrier algorithms.

•2 (adaptive) Use an adaptive rule based on the complementarity gap to determine the value of the barrier
parameter. Available for both barrier algorithms.

•3 (probing) Use a probing (affine-scaling) step to dynamically determine the barrier parameter. Available
only for the Interior/Direct algorithm.

•4 (dampmpc) Use a Mehrotra predictor-corrector type rule to determine the barrier parameter, with safe-
guards on the corrector step. Available only for the Interior/Direct algorithm.

•5 (fullmpc) Use a Mehrotra predictor-corrector type rule to determine the barrier parameter, without safe-
guards on the corrector step. Available only for the Interior/Direct algorithm.

•6 (quality) Minimize a quality function at each iteration to determine the barrier parameter. Available only
for the Interior/Direct algorithm.

Default value: 0

3.7. Knitro user options 237



Artelys Knitro Documentation, Release 11.0.0

bar_penaltycons

KN_PARAM_BAR_PENCONS

#define KN_PARAM_BAR_PENCONS 1050
# define KN_BAR_PENCONS_AUTO 0
# define KN_BAR_PENCONS_NONE 1
# define KN_BAR_PENCONS_ALL 2
# define KN_BAR_PENCONS_EQUALITIES 3

Indicates whether a penalty approach is applied to the constraints.

Using a penalty approach may be helpful when the problem has degenerate or difficult constraints. It may also
help to more quickly identify infeasible problems, or achieve feasibility in problems with difficult constraints.

This option has no effect on the Active Set algorithm.

•0 (auto) Let Knitro automatically choose the strategy.

•1 (none) No constraints are penalized.

•2 (all) A penalty approach is applied to all general constraints.

•3 (equalities) Apply a penalty approach to equality constraints only.

Default value: 0

bar_penaltyrule

KN_PARAM_BAR_PENRULE

#define KN_PARAM_BAR_PENRULE 1049
# define KN_BAR_PENRULE_AUTO 0
# define KN_BAR_PENRULE_SINGLE 1
# define KN_BAR_PENRULE_FLEX 2

Indicates which penalty parameter strategy to use for determining whether or not to accept a trial iterate. This
option has no effect on the Active Set algorithm.

•0 (auto) Let Knitro automatically choose the strategy.

•1 (single) Use a single penalty parameter in the merit function to weight feasibility versus optimality.

•2 (flex) Use a more tolerant and flexible step acceptance procedure based on a range of penalty parameter
values.

Default value: 0

bar_refinement

KN_PARAM_BAR_REFINEMENT

#define KN_PARAM_BAR_REFINEMENT 1079
# define KN_BAR_REFINEMENT_NO 0
# define KN_BAR_REFINEMENT_YES 1

Specifies whether to try to refine the barrier solution for better precision. If enabled, once the optimality condi-
tions are satisfied, Knitro will apply an additional refinement/postsolve phase to try to obtain more precision in
the barrier solution. The effect is similar to the effect of enabling bar_maxcrossit, but it is usually much
more efficient since it does not involve switching to the Active Set algorithm.

238 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Default value: 0

bar_relaxcons

KN_PARAM_BAR_RELAXCONS

#define KN_PARAM_BAR_RELAXCONS 1077
# define KN_BAR_RELAXCONS_NONE 0
# define KN_BAR_RELAXCONS_EQS 1
# define KN_BAR_RELAXCONS_INEQS 2
# define KN_BAR_RELAXCONS_ALL 3

Indicates whether a relaxation approach is applied to the constraints.

Using a relaxation approach may be helpful when the problem has degenerate or difficult constraints.

This option has no effect on the Active Set algorithm.

•0 (none) No constraints are relaxed.

•1 (eqs) A relaxation approach is applied to general equality constraints.

•2 (ineqs) A relaxation approach is applied to general inequality constraints.

•3 (all) A relaxation approach is applied to all general constraints.

Default value: 2

bar_slackboundpush

KN_PARAM_BAR_SLACKBOUNDPUSH

#define KN_PARAM_BAR_SLACKBOUNDPUSH 1102

Specifies the amount by which the barrier slack variables are initially pushed inside the bounds. A smaller value
may be preferable when warm-starting from a point close to the solution.

Default value: 1.0e-1

bar_switchobj

KN_PARAM_BAR_SWITCHOBJ

#define KN_PARAM_BAR_SWITCHOBJ 1104
# define KN_BAR_SWITCHOBJ_NONE 0
# define KN_BAR_SWITCHOBJ_SCALARPROX 1
# define KN_BAR_SWITCHOBJ_DIAGPROX 2

Indicates which objective function to use when the barrier algorithms switch to a pure feasibility phase.

•0 (none) No (or zero) objective.

•1 (scalarprox) Proximal point objective with scalar weighting.

•2 (diagprox) Proximal point objective with diagonal weighting.

Default value: 1

bar_switchrule

KN_PARAM_BAR_SWITCHRULE

3.7. Knitro user options 239



Artelys Knitro Documentation, Release 11.0.0

#define KN_PARAM_BAR_SWITCHRULE 1061
# define KN_BAR_SWITCHRULE_AUTO 0
# define KN_BAR_SWITCHRULE_NEVER 1
# define KN_BAR_SWITCHRULE_MODERATE 2
# define KN_BAR_SWITCHRULE_AGGRESSIVE 3

Indicates whether or not the barrier algorithms will allow switching from an optimality phase to a pure feasibility
phase. This option has no effect on the Active Set algorithm.

•0 (auto) Let Knitro determine the switching procedure.

•1 (never) Never switch to feasibility phase.

•2 (moderate) Allow switches to feasibility phase.

•3 (aggressive) Use a more aggressive switching rule.

Default value: 0

bar_watchdog

KN_PARAM_BAR_WATCHDOG

#define KN_PARAM_BAR_WATCHDOG 1089
# define KN_BAR_WATCHDOG_NO 0
# define KN_BAR_WATCHDOG_YES 1

Specifies whether to enable watchdog heuristic for barrier algorithms. In general, enabling the watchdog heuris-
tic makes the barrier algorithms more likely to accept trial points. Specifically, the watchdog heuristic may
occasionally accept trial points that increase the merit function, provided that subsequent iterates decrease the
merit function.

Default value: 0

3.7.6 Active-set options

act_lpalg

KN_PARAM_ACT_LPALG

#define KN_PARAM_ACT_LPALG 1109
# define KN_ACT_LPALG_DEFAULT 0
# define KN_ACT_LPALG_PRIMAL 1
# define KN_ACT_LPALG_DUAL 2
# define KN_ACT_LPALG_BARRIER 3

Indicates which algorithm to use to solve linear programming (LP) subproblems when using the Knitro Active
Set or SQP algorithms.

This option is currently only active when using the CPLEX(R) or Xpress(R) LP solvers chosen via
act_lpsolver.

This option has no effect on the Interior/Direct and Interior/CG algorithms.

•0 (default) use the default algorithm for the chosen LP solver.

•1 (primal) use a primal simplex algorithm.

•2 (dual) use a dual simplex algorithm.

240 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

•3 (barrier) use a barrier/interior-point algorithm.

Default value: 0

act_lpfeastol

KN_PARAM_ACT_LPFEASTOL

#define KN_PARAM_ACT_LPFEASTOL 1098

Specifies the feasibility tolerance used for linear programming subproblems solved when using the Active Set
or SQP algorithms.

Default value: 1.0e-8

act_lppenalty

KN_PARAM_ACT_LPPENALTY

#define KN_PARAM_ACT_LPPENALTY 1111
# define KN_ACT_LPPENALTY_ALL 1
# define KN_ACT_LPPENALTY_NONLINEAR 2
# define KN_ACT_LPPENALTY_DYNAMIC 3

Indicates whether to use a penalty formulation for linear programming subproblems in the Knitro Active Set or
SQP algorithms.

•1 (all) penalize all constraints.

•2 (nonlinear) penalize only nonlinear constraints.

•3 (dynamic) dynamically choose which constraints to penalize.

Default value: 1

act_lppresolve

KN_PARAM_ACT_LPPRESOLVE

#define KN_PARAM_ACT_LPPRESOLVE 1110
# define KN_ACT_LPPRESOLVE_OFF 0
# define KN_ACT_LPPRESOLVE_ON 1

Indicates whether to apply a presolve for linear programming subproblems in the Knitro Active Set or SQP
algorithms.

•0 (off) presolve turned off for LP subproblems.

•1 (on) presolve turned on for LP subproblems.

Default value: 0

act_lpsolver

KN_PARAM_ACT_LPSOLVER

#define KN_PARAM_ACT_LPSOLVER 1012
# define KN_ACT_LPSOLVER_INTERNAL 1
# define KN_ACT_LPSOLVER_CPLEX 2
# define KN_ACT_LPSOLVER_XPRESS 3

3.7. Knitro user options 241



Artelys Knitro Documentation, Release 11.0.0

Indicates which linear programming simplex solver the Knitro Active Set or SQP algorithms use when solving
internal LP subproblems.

This option has no effect on the Interior/Direct and Interior/CG algorithms.

•1 (internal) Knitro uses its default LP solver.

•2 (cplex) Knitro uses IBM ILOG-CPLEX(R), provided the user has a valid CPLEX license. The CPLEX
library is loaded dynamically after KN_solve() is called.

•3 (xpress) Knitro uses the FICO Xpress(R) solver, provided the user has a valid Xpress license. The Xpress
library is loaded dynamically after KN_solve() is called.

Default value: 1

If act_lpsolver = cplex then the CPLEX shared object library or DLL must reside in the operating system’s
load path. If this option is selected, Knitro will automatically look for (in order): CPLEX 12.6, CPLEX 12.5,
CPLEX 12.4, CPLEX 12.3, CPLEX 12.2, CPLEX 12.1, CPLEX 12.0, CPLEX 11.2, CPLEX 11.1, CPLEX
11.0, CPLEX 10.2, CPLEX 10.1, CPLEX 10.0, CPLEX 9.1, CPLEX 9.0, or CPLEX 8.0.

To override the automatic search and load a particular CPLEX library, set its name with the character type user
option cplexlibname. Either supply the full path name in this option, or make sure the library resides in
a directory that is listed in the operating system’s load path. For example, to specifically load the Windows
CPLEX library cplex123.dll, make sure the directory containing the library is part of the PATH environ-
ment variable, and call the following (also be sure to check the return status of this call):

KN_set_char_param_by_name (kc, "cplexlibname", "cplex90.dll");

If act_lpsolver = xpress then the Xpress shared object library or DLL must reside in the operating system’s
load path. If this option is selected, Knitro will automatically look for the standard Xpress dll/shared library
name.

To override the automatic search and load a particular Xpress library, set its name with the character type user
option xpresslibname. Either supply the full path name in this option, or make sure the library resides in a
directory that is listed in the operating system’s load path.

act_parametric

KN_PARAM_ACT_PARAMETRIC

#define KN_PARAM_ACT_PARAMETRIC 1107
# define KN_ACT_PARAMETRIC_NO 0
# define KN_ACT_PARAMETRIC_MAYBE 1
# define KN_ACT_PARAMETRIC_YES 2

Indicates whether to use a parametric approach when solving linear programming (LP) subproblems when using
the Knitro Active Set or SQP algorithms. A parametric approach will solve a sequence of closely related LPs
instead of one LP. It may increase the cost of an active-set iteration, but perhaps lead to convergence in fewer
iterations.

•0 (no) do not use a parametric solve (i.e. solve a single LP).

•1 (maybe) use a parametric solve sometimes.

•2 (yes) always try a parametric solve.

Default value: 1

act_qpalg

KN_PARAM_ACT_QPALG

242 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

#define KN_PARAM_ACT_QPALG 1092
# define KN_ACT_QPALG_AUTO 0
# define KN_ACT_QPALG_BAR_DIRECT 1
# define KN_ACT_QPALG_BAR_CG 2
# define KN_ACT_QPALG_ACT_CG 3

Indicates which algorithm to use to solve quadratic programming (QP) subproblems when using the Knitro
Active Set or SQP algorithms.

This option has no effect on the Interior/Direct and Interior/CG algorithms.

•0 (auto) let Knitro automatically choose an algorithm, based on the problem characteristics.

•1 (direct) use the Interior/Direct algorithm.

•2 (cg) use the Interior/CG algorithm.

•3 (active) use the Active Set algorithm.

Default value: 0

cplexlibname

KN_PARAM_CPLEXLIB

#define KN_PARAM_CPLEXLIB 1048

See option act_lpsolver.

xpresslibname

KN_PARAM_XPRESSLIB

#define KN_PARAM_XPRESSLIB 1069

See option act_lpsolver.

3.7.7 MIP options

mip_branchrule

KN_PARAM_MIP_BRANCHRULE

#define KN_PARAM_MIP_BRANCHRULE 2002
# define KN_MIP_BRANCH_AUTO 0
# define KN_MIP_BRANCH_MOSTFRAC 1
# define KN_MIP_BRANCH_PSEUDOCOST 2
# define KN_MIP_BRANCH_STRONG 3

Specifies which branching rule to use for MIP branch and bound procedure.

•0 (auto) Let Knitro automatically choose the branching rule.

•1 (most_frac) Use most fractional (most infeasible) branching.

•2 (pseudcost) Use pseudo-cost branching.

•3 (strong) Use strong branching (see options mip_strong_candlim, mip_strong_level and
mip_strong_maxit for further control of strong branching procedure).

3.7. Knitro user options 243



Artelys Knitro Documentation, Release 11.0.0

Default value: 0

mip_debug

KN_PARAM_MIP_DEBUG

#define KN_PARAM_MIP_DEBUG 2013
# define KN_MIP_DEBUG_NONE 0
# define KN_MIP_DEBUG_ALL 1

Specifies debugging level for MIP solution.

•0 (none) No MIP debugging output created.

•1 (all) Write MIP debugging output to the file kdbg_mip.log.

Default value: 0

mip_gub_branch

KN_PARAM_MIP_GUB_BRANCH

#define KN_PARAM_MIP_GUB_BRANCH 2015 /*-- BRANCH ON GENERALIZED BOUNDS */
# define KN_MIP_GUB_BRANCH_NO 0
# define KN_MIP_GUB_BRANCH_YES 1

Specifies whether or not to branch on generalized upper bounds (GUBs).

•0 (no) Do not branch on GUBs.

•1 (yes) Allow branching on GUBs.

Default value: 0

mip_heuristic

KN_PARAM_MIP_HEURISTIC

#define KN_PARAM_MIP_HEURISTIC 2022
# define KN_MIP_HEURISTIC_AUTO 0
# define KN_MIP_HEURISTIC_NONE 1
# define KN_MIP_HEURISTIC_FEASPUMP 2
# define KN_MIP_HEURISTIC_MPEC 3

Specifies which MIP heuristic search approach to apply to try to find an initial integer feasible point.

If a heuristic search procedure is enabled, it will run for at most mip_heuristic_maxit iterations, before starting
the branch and bound procedure.

•0 (auto) Let Knitro choose the heuristic to apply (if any).

•1 (none) No heuristic search applied.

•2 (feaspump) Apply feasibility pump heuristic.

•3 (mpec) Apply heuristic based on MPEC formulation.

Default value: 0

mip_heuristic_maxit

244 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

KN_PARAM_MIP_HEURISTIC_MAXIT

#define KN_PARAM_MIP_HEUR_MAXIT 2023

Specifies the maximum number of iterations to allow for MIP heuristic, if one is enabled.

Default value: 100

mip_heuristic_terminate

KN_PARAM_MIP_HEUR_TERMINATE

#define KN_PARAM_MIP_HEUR_TERMINATE 2033
# define KN_MIP_HEUR_TERMINATE_FEASIBLE 1
# define KN_MIP_HEUR_TERMINATE_LIMIT 2

Specifies the condition for terminating the MIP heuristic.

•1 (feasible) Terminate at first feasible point or iteration limit (whichever comes first).

•2 (limit) Always run to the iteration limit.

Default value: 1

mip_implications

KN_PARAM_MIP_IMPLICATNS

#define KN_PARAM_MIP_IMPLICATNS 2014 /*-- USE LOGICAL IMPLICATIONS */
# define KN_MIP_IMPLICATNS_NO 0
# define KN_MIP_IMPLICATNS_YES 1

Specifies whether or not to add constraints to the MIP derived from logical implications.

•0 (no) Do not add constraints from logical implications.

•1 (yes) Knitro adds constraints from logical implications.

Default value: 1

mip_integer_tol

KN_PARAM_MIP_INTEGERTOL

#define KN_PARAM_MIP_INTEGERTOL 2009

This value specifies the threshold for deciding whether or not a variable is determined to be an integer.

Default value: 1.0e-8

mip_integral_gap_abs

KN_PARAM_MIP_INTGAPABS

#define KN_PARAM_MIP_INTGAPABS 2004

The absolute integrality gap stop tolerance for MIP.

Default value: 1.0e-6

3.7. Knitro user options 245



Artelys Knitro Documentation, Release 11.0.0

mip_integral_gap_rel

KN_PARAM_MIP_INTGAPREL

#define KN_PARAM_MIP_INTGAPREL 2005

The relative integrality gap stop tolerance for MIP.

Default value: 1.0e-6

mip_intvar_strategy

KN_PARAM_MIP_INTVAR_STRATEGY

#define KN_PARAM_MIP_INTVAR_STRATEGY 2030
# define KN_MIP_INTVAR_STRATEGY_NONE 0
# define KN_MIP_INTVAR_STRATEGY_RELAX 1
# define KN_MIP_INTVAR_STRATEGY_MPEC 2

Specifies how to handle integer variables.

•0 (none) No special treatment applied.

•1 (relax) Relax all integer variables.

•2 (mpec) Convert all binary variables to complementarity constraints.

Default value: 0

mip_knapsack

KN_PARAM_MIP_KNAPSACK

#define KN_PARAM_MIP_KNAPSACK 2016 /*-- KNAPSACK CUTS */
# define KN_MIP_KNAPSACK_NO 0 /*-- NONE */
# define KN_MIP_KNAPSACK_INEQ 1 /*-- ONLY FOR INEQUALITIES */
# define KN_MIP_KNAPSACK_INEQ_EQ 2 /*-- FOR INEQS AND EQS */

Specifies rules for adding MIP knapsack cuts.

•0 (none) Do not add knapsack cuts.

•1 (ineqs) Add cuts derived from inequalities only.

•2 (ineqs_eqs) Add cuts derived from both inequalities and equalities.

Default value: 1

mip_lpalg

KN_PARAM_MIP_LPALG

#define KN_PARAM_MIP_LPALG 2019
# define KN_MIP_LPALG_AUTO 0
# define KN_MIP_LPALG_BAR_DIRECT 1
# define KN_MIP_LPALG_BAR_CG 2
# define KN_MIP_LPALG_ACT_CG 3

246 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Specifies which algorithm to use for any linear programming (LP) subproblem solves that may occur in the MIP
branch and bound procedure.

LP subproblems may arise if the problem is a mixed integer linear program (MILP), or if using mip_method
= HQG. (Nonlinear programming subproblems use the algorithm specified by the algorithm option.)

•0 (auto) Let Knitro automatically choose an algorithm, based on the problem characteristics.

•1 (direct) Use the Interior/Direct (barrier) algorithm.

•2 (cg) Use the Interior/CG (barrier) algorithm.

•3 (active) Use the Active Set (simplex) algorithm.

Default value: 0

mip_maxnodes

KN_PARAM_MIP_MAXNODES

#define KN_PARAM_MIP_MAXNODES 2021

Specifies the maximum number of nodes explored (0 means no limit).

Default value: 100000

mip_maxsolves

KN_PARAM_MIP_MAXSOLVES

#define KN_PARAM_MIP_MAXSOLVES 2008

Specifies the maximum number of subproblem solves allowed (0 means no limit).

Default value: 200000

mip_maxtime_cpu

KN_PARAM_MIP_MAXTIMECPU

#define KN_PARAM_MIP_MAXTIMECPU 2006

Specifies the maximum allowable CPU time in seconds for the complete MIP solution.

Use maxtime_cpu to additionally limit time spent per subproblem solve.

Default value: 1.0e8

mip_maxtime_real

KN_PARAM_MIP_MAXTIMEREAL

#define KN_PARAM_MIP_MAXTIMEREAL 2007

Specifies the maximum allowable real time in seconds for the complete MIP solution.

Use maxtime_real to additionally limit time spent per subproblem solve.

Default value: 1.0e8

mip_method

3.7. Knitro user options 247



Artelys Knitro Documentation, Release 11.0.0

KN_PARAM_MIP_METHOD

#define KN_PARAM_MIP_METHOD 2001
# define KN_MIP_METHOD_AUTO 0
# define KN_MIP_METHOD_BB 1
# define KN_MIP_METHOD_HQG 2
# define KN_MIP_METHOD_MISQP 3

Specifies which MIP method to use.

•0 (auto) Let Knitro automatically choose the method.

•1 (BB) Use the standard branch and bound method.

•2 (HQG) Use the hybrid Quesada-Grossman method (for convex, nonlinear problems only).

•3 (MISQP) Use mixed-integer SQP method (allows for non-relaxable integer variables).

Default value: 0

mip_nodealg

KN_PARAM_MIP_NODEALG

#define KN_PARAM_MIP_NODEALG 2032
# define KN_MIP_NODEALG_AUTO 0
# define KN_MIP_NODEALG_BAR_DIRECT 1
# define KN_MIP_NODEALG_BAR_CG 2
# define KN_MIP_NODEALG_ACT_CG 3
# define KN_MIP_NODEALG_ACT_SQP 4
# define KN_MIP_NODEALG_MULTI 5

Specifies which algorithm to use for standard node subproblem solves in MIP (same options as algorithm
user option).

Default value: 0

mip_outinterval

KN_PARAM_MIP_OUTINTERVAL

#define KN_PARAM_MIP_OUTINTERVAL 2011

Specifies node printing interval for mip_outlevel when mip_outlevel > 0.

•1 Print output every node.

•2 Print output every 2nd node.

•N Print output every Nth node.

Default value: 10

mip_outlevel

KN_PARAM_MIP_OUTLEVEL

#define KN_PARAM_MIP_OUTLEVEL 2010
# define KN_MIP_OUTLEVEL_NONE 0
# define KN_MIP_OUTLEVEL_ITERS 1

248 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

# define KN_MIP_OUTLEVEL_ITERSTIME 2
# define KN_MIP_OUTLEVEL_ROOT 3

Specifies how much MIP information to print.

•0 (none) Do not print any MIP node information.

•1 (iters) Print one line of output for every node.

•2 (iterstime) Also print accumulated time for every node.

•3 (root) Also print detailed log from root node solve.

Default value: 1

mip_outsub

KN_PARAM_MIP_OUTSUB

#define KN_PARAM_MIP_OUTSUB 2012
# define KN_MIP_OUTSUB_NONE 0
# define KN_MIP_OUTSUB_YES 1
# define KN_MIP_OUTSUB_YESPROB 2

Specifies MIP subproblem solve debug output control. This output is only produced if mip_debug = 1 and
appears in the file kdbg_mip.log.

•0 Do not print any debug output from subproblem solves.

•1 Subproblem debug output enabled, controlled by option outlev.

•2 Subproblem debug output enabled and print problem characteristics.

Default value: 0

mip_pseudoinit

KN_PARAM_MIP_PSEUDOINIT

#define KN_PARAM_MIP_PSEUDOINIT 2026
# define KN_MIP_PSEUDOINIT_AUTO 0
# define KN_MIP_PSEUDOINIT_AVE 1
# define KN_MIP_PSEUDOINIT_STRONG 2

Specifies the method used to initialize pseudo-costs corresponding to variables that have not yet been branched
on in the MIP method.

•0 Let Knitro automatically choose the method.

•1 Initialize using the average value of computed pseudo-costs.

•2 Initialize using strong branching.

Default value: 0

mip_relaxable

KN_PARAM_MIP_RELAXABLE

3.7. Knitro user options 249



Artelys Knitro Documentation, Release 11.0.0

#define KN_PARAM_MIP_RELAXABLE 2031
# define KN_MIP_RELAXABLE_NONE 0
# define KN_MIP_RELAXABLE_ALL 1

Specifies Whether integer variables are relaxable.

•0 (none) Integer variables are not relaxable.

•1 (all) All integer variables are relaxable.

Default value: 1

mip_rootalg

KN_PARAM_MIP_ROOTALG

#define KN_PARAM_MIP_ROOTALG 2018
# define KN_MIP_ROOTALG_AUTO 0
# define KN_MIP_ROOTALG_BAR_DIRECT 1
# define KN_MIP_ROOTALG_BAR_CG 2
# define KN_MIP_ROOTALG_ACT_CG 3
# define KN_MIP_ROOTALG_ACT_SQP 4
# define KN_MIP_ROOTALG_MULTI 5

Specifies which algorithm to use for the root node solve in MIP (same options as algorithm user option).

Default value: 0

mip_rounding

KN_PARAM_MIP_ROUNDING

#define KN_PARAM_MIP_ROUNDING 2017
# define KN_MIP_ROUND_AUTO 0
# define KN_MIP_ROUND_NONE 1 /*-- DO NOT ATTEMPT ROUNDING */
# define KN_MIP_ROUND_HEURISTIC 2 /*-- USE FAST HEURISTIC */
# define KN_MIP_ROUND_NLP_SOME 3 /*-- SOLVE NLP IF LIKELY TO WORK */
# define KN_MIP_ROUND_NLP_ALWAYS 4 /*-- SOLVE NLP ALWAYS */

Specifies the MIP rounding rule to apply.

•0 (auto) Let Knitro choose the rounding rule.

•1 (none) No rounding heuristic is used.

•2 (heur_only) Round using a fast heuristic only.

•3 (nlp_sometimes) Round and solve a subproblem if likely to succeed.

•4 (nlp_always) Always round and solve a subproblem.

Default value: 0

mip_selectdir

KN_PARAM_MIP_SELECTDIR

#define KN_PARAM_MIP_SELECTDIR 2034
# define KN_MIP_SELECTDIR_DOWN 0
# define KN_MIP_SELECTDIR_UP 1

250 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Specifies the MIP node selection direction rule (for tiebreakers) for choosing the next node in the branch and
bound tree.

•0 (down) Choose the down (i.e. <=) node first.

•1 (up) Choose the up (i.e. >=) node first.

Default value: 0

mip_selectrule

KN_PARAM_MIP_SELECTRULE

#define KN_PARAM_MIP_SELECTRULE 2003
# define KN_MIP_SEL_AUTO 0
# define KN_MIP_SEL_DEPTHFIRST 1
# define KN_MIP_SEL_BESTBOUND 2
# define KN_MIP_SEL_COMBO_1 3

Specifies the MIP select rule for choosing the next node in the branch and bound tree.

•0 (auto) Let Knitro choose the node selection rule.

•1 (depth_first) Search the tree using a depth first procedure.

•2 (best_bound) Select the node with the best relaxation bound.

•3 (combo_1) Use depth first unless pruned, then best bound.

Default value: 0

mip_strong_candlim

KN_PARAM_MIP_STRONG_CANDLIM

#define KN_PARAM_MIP_STRONG_CANDLIM 2028

Specifies the maximum number of candidates to explore for MIP strong branching.

Default value: 10

mip_strong_level

KN_PARAM_MIP_STRONG_LEVEL

#define KN_PARAM_MIP_STRONG_LEVEL 2029

Specifies the maximum number of tree levels on which to perform MIP strong branching.

Default value: 10

mip_strong_maxit

KN_PARAM_MIP_STRONG_MAXIT

#define KN_PARAM_MIP_STRONG_MAXIT 2027

Specifies the maximum number of iterations to allow for MIP strong branching solves.

Default value: 1000

3.7. Knitro user options 251



Artelys Knitro Documentation, Release 11.0.0

mip_terminate

KN_PARAM_MIP_TERMINATE

#define KN_PARAM_MIP_TERMINATE 2020
# define KN_MIP_TERMINATE_OPTIMAL 0
# define KN_MIP_TERMINATE_FEASIBLE 1

Specifies conditions for terminating the MIP algorithm.

•0 (optimal) Terminate at optimum.

•1 (feasible) Terminate at first integer feasible point.

Default value: 0

3.7.8 Multi-algorithm options

ma_maxtime_cpu

KN_PARAM_MA_MAXTIMECPU

#define KN_PARAM_MA_MAXTIMECPU 1064

Specifies, in seconds, the maximum allowable CPU time before termination for the multi-algorithm (“MA”)
procedure (alg=5).

Default value: 1.0e8

ma_maxtime_real

KN_PARAM_MA_MAXTIMEREAL

#define KN_PARAM_MA_MAXTIMEREAL 1065

Specifies, in seconds, the maximum allowable real time before termination for the multi-algorithm (“MA”)
procedure (alg=5).

Default value: 1.0e8

Note: When using the multi-algorithm procedure, the options maxtime_cpu and maxtime_real control time
limits for the individual algorithms, while ma_maxtime_cpu and ma_maxtime_real impose time limits for the
overall procedure.

ma_outsub

KN_PARAM_MA_OUTSUB

#define KN_PARAM_MA_OUTSUB 1067
# define KN_MA_OUTSUB_NONE 0
# define KN_MA_OUTSUB_YES 1

Enable writing algorithm output to files for the multi-algorithm (alg=5) procedure.

•0 Do not write detailed algorithm output to files.

252 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

•1 Write detailed algorithm output to files named knitro_ma_*.log.

Default value: 0

ma_terminate

KN_PARAM_MA_TERMINATE

#define KN_PARAM_MA_TERMINATE 1063
# define KN_MA_TERMINATE_ALL 0
# define KN_MA_TERMINATE_OPTIMAL 1
# define KN_MA_TERMINATE_FEASIBLE 2
# define KN_MA_TERMINATE_ANY 3

Define the termination condition for the multi-algorithm (alg=5) procedure.

•0 Terminate after all algorithms have completed.

•1 Terminate at first locally optimal solution.

•2 Terminate at first feasible solution estimate.

•3 Terminate at first solution estimate of any type.

Default value: 1

3.7.9 Multistart options

ms_deterministic

KN_PARAM_MSDETERMINISTIC

#define KN_PARAM_MSDETERMINISTIC 1078
# define KN_MSDETERMINISTIC_NO 0
# define KN_MSDETERMINISTIC_YES 1

Indicates whether Knitro multi-start procedure will be deterministic (when ms_terminate = 0).

•0 (no) multithreaded multi-start is non-deterministic.

•1 (yes) multithreaded multi-start is deterministic (when ms_terminate = 0).

Default value: 1

ms_enable

KN_PARAM_MULTISTART

#define KN_PARAM_MULTISTART 1033
# define KN_MULTISTART_NO 0
# define KN_MULTISTART_YES 1

Indicates whether Knitro will solve from multiple start points to find a better local minimum.

•0 (no) Knitro solves from a single initial point.

•1 (yes) Knitro solves using multiple start points.

Default value: 0

ms_maxbndrange

3.7. Knitro user options 253



Artelys Knitro Documentation, Release 11.0.0

KN_PARAM_MSMAXBNDRANGE

#define KN_PARAM_MSMAXBNDRANGE 1035

Specifies the maximum range that an unbounded variable can take when determining new start points.

If a variable is unbounded in one or both directions, then new start point values are restricted by the option. If
𝑥𝑖 is such a variable, then all initial values satisfy

max{𝑏𝐿𝑖 , 𝑥0
𝑖 − ms_maxbndrange/2} ≤ 𝑥𝑖 ≤ min{𝑏𝑈𝑖 , 𝑥0

𝑖 + ms_maxbndrange/2},

where 𝑥0
𝑖 is the initial value of 𝑥𝑖 provided by the user, and 𝑏𝐿𝑖 and 𝑏𝑈𝑖 are the variable bounds (possibly infinite)

on 𝑥𝑖. This option has no effect unless ms_enable = yes.

Default value: 1000.0

ms_maxsolves

KN_PARAM_MSMAXSOLVES

#define KN_PARAM_MSMAXSOLVES 1034

Specifies how many start points to try in multi-start. This option has no effect unless ms_enable = yes.

•0 Let Knitro automatically choose a value based on the problem size. The value is min(200, 10 N), where
N is the number of variables in the problem.

•n Try n>0 start points.

Default value: 0

ms_maxtime_cpu

KN_PARAM_MSMAXTIMECPU

#define KN_PARAM_MSMAXTIMECPU 1036

Specifies, in seconds, the maximum allowable CPU time before termination.

The limit applies to the operation of Knitro since multi-start began; in contrast, the value of maxtime_cpu
limits how long Knitro iterates from a single start point. Therefore, ms_maxtime_cpu should be greater than
maxtime_cpu. This option has no effect unless ms_enable = yes.

Default value: 1.0e8

ms_maxtime_real

KN_PARAM_MSMAXTIMEREAL

#define KN_PARAM_MSMAXTIMEREAL 1037

Specifies, in seconds, the maximum allowable real time before termination.

The limit applies to the operation of Knitro since multi-start began; in contrast, the value of maxtime_real
limits how long Knitro iterates from a single start point. Therefore, ms_maxtime_real should be greater
than maxtime_real. This option has no effect unless ms_enable = yes.

Default value: 1.0e8

254 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

ms_num_to_save

KN_PARAM_MSNUMTOSAVE

#define KN_PARAM_MSNUMTOSAVE 1051

Specifies the number of distinct feasible points to save in a file named knitro_mspoints.log.

Each point results from a Knitro solve from a different starting point, and must satisfy the absolute and relative
feasibility tolerances. The file stores points in order from best objective to worst. Points are distinct if they differ
in objective value or some component by the value of ms_savetol using a relative tolerance test. This option
has no effect unless ms_enable = yes.

Default value: 0

ms_outsub

KN_PARAM_MS_OUTSUB

#define KN_PARAM_MS_OUTSUB 1068
# define KN_MS_OUTSUB_NONE 0
# define KN_MS_OUTSUB_YES 1

Enable writing algorithm output to files for the parallel multistart procedure.

•0 Do not write detailed algorithm output to files.

•1 Write detailed algorithm output to files named knitro_ms_*.log.

Default value: 0

ms_savetol

KN_PARAM_MSSAVETOL

#define KN_PARAM_MSSAVETOL 1052

Specifies the tolerance for deciding if two feasible points are distinct.

Points are distinct if they differ in objective value or some component by the value of ms_savetol using a
relative tolerance test. A large value can cause the saved feasible points in the file knitro_mspoints.log
to cluster around more widely separated points. This option has no effect unless ms_enable = yes. and
ms_num_to_save is positive.

Default value: 1.0e-6

ms_seed

KN_PARAM_MSSEED

#define KN_PARAM_MSSEED 1066

Seed value used to generate random initial points in multi-start; should be a non-negative integer.

Default value: 0

ms_startptrange

KN_PARAM_MSSTARTPTRANGE

3.7. Knitro user options 255



Artelys Knitro Documentation, Release 11.0.0

#define KN_PARAM_MSSTARTPTRANGE 1055

Specifies the maximum range that each variable can take when determining new start points.

If a variable has upper and lower bounds and the difference between them is less than or equal to
ms_startptrange, then new start point values for the variable can be any number between its upper and
lower bounds.

If the variable is unbounded in one or both directions, or the difference between bounds is greater than
ms_startptrange, then new start point values are restricted by the option. If 𝑥𝑖 is such a variable, then
all initial values satisfy

max{𝑏𝐿𝑖 , 𝑥0
𝑖 − 𝜏} ≤ 𝑥𝑖 ≤ min{𝑏𝑈𝑖 , 𝑥0

𝑖 + 𝜏},
𝜏 = min{ms_startptrange/2, ms_maxbndrange/2}

where 𝑥0
𝑖 is the initial value of 𝑥𝑖 provided by the user, and 𝑏𝐿𝑖 and 𝑏𝑈𝑖 are the variable bounds (possibly infinite)

on 𝑥𝑖. This option has no effect unless ms_enable = yes.

Default value: 1.0e20

ms_terminate

KN_PARAM_MSTERMINATE

#define KN_PARAM_MSTERMINATE 1054
# define KN_MSTERMINATE_MAXSOLVES 0
# define KN_MSTERMINATE_OPTIMAL 1
# define KN_MSTERMINATE_FEASIBLE 2
# define KN_MSTERMINATE_ANY 3

Specifies the condition for terminating multi-start.

This option has no effect unless ms_enable = yes.

•0 Terminate after ms_maxsolves.

•1 Terminate after the first local optimal solution is found or ms_maxsolves, whichever comes first.

•2 Terminate after the first feasible solution estimate is found or ms_maxsolves, whichever comes first.

•3 Terminate after the first solution estimate of any type is found or ms_maxsolves, whichever comes first.

Default value: 0

par_msnumthreads

KN_PARAM_PAR_MSNUMTHREADS

#define KN_PARAM_PAR_MSNUMTHREADS 3005
# define KN_PAR_MSNUMTHREADS_AUTO 0

Specify the number of threads to use for multistart (when ms_enable = 1).

•0 (auto) Let Knitro choose the number of threads (currently sets par_msnumthreads to
par_numthreads).

•n>0 Use n threads for the multistart (solve n problems in parallel).

Default value: 0

256 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

3.7.10 Parallelism options

par_blasnumthreads

KN_PARAM_PAR_BLASNUMTHREADS

#define KN_PARAM_PAR_BLASNUMTHREADS 3003

Specify the number of threads to use for BLAS operations when blasoption = 1 (see Parallelism).

Default value: 1

par_concurrent_evals

KN_PARAM_PAR_CONCURRENT_EVALS

#define KN_PARAM_PAR_CONCURRENT_EVALS 3002
# define KN_PAR_CONCURRENT_EVALS_NO 0
# define KN_PAR_CONCURRENT_EVALS_YES 1

Determines whether or not the user provided callback functions used for function and derivative evaluations
can take place concurrently in parallel (for possibly different values of “x”). If it is not safe to have concurrent
evaluations, then setting par_concurrent_evals=0, will put these evaluations in a critical region so that
only one evaluation can take place at a time. If par_concurrent_evals=1 then concurrent evaluations are
allowed when Knitro is run in parallel, and it is the responsibility of the user to ensure that these evaluations are
stable. See Parallelism.

•0 (no) Do not allow concurrent callback evaluations.

•1 (yes) Allow concurrent callback evaluations.

Default value: 1

par_lsnumthreads

KN_PARAM_PAR_LSNUMTHREADS

#define KN_PARAM_PAR_LSNUMTHREADS 3004

Specify the number of threads to use for linear system solve operations when linsolver = 6 (see Parallelism).

Default value: 1

par_numthreads

KN_PARAM_PAR_NUMTHREADS

#define KN_PARAM_PAR_NUMTHREADS 3001

Specify the number of threads to use for parallel (excluding BLAS) computing features (see Parallelism).

Default value: 1

3.7.11 Output options

debug

3.7. Knitro user options 257



Artelys Knitro Documentation, Release 11.0.0

KN_PARAM_DEBUG

#define KN_PARAM_DEBUG 1031
# define KN_DEBUG_NONE 0
# define KN_DEBUG_PROBLEM 1
# define KN_DEBUG_EXECUTION 2

Controls the level of debugging output.

Debugging output can slow execution of Knitro and should not be used in a production setting. All debugging
output is suppressed if option outlev = 0.

•0 (none) No debugging output.

•1 (problem) Print algorithm information to kdbg*.log output files.

•2 (execution) Print program execution information.

Default value: 0

newpoint

KN_PARAM_NEWPOINT

#define KN_PARAM_NEWPOINT 1001
# define KN_NEWPOINT_NONE 0
# define KN_NEWPOINT_SAVEONE 1
# define KN_NEWPOINT_SAVEALL 2

Specifies additional action to take after every iteration in a solve of a continuous problem.

An iteration of Knitro results in a new point that is closer to a solution. The new point includes values of x
and Lagrange multipliers lambda. The “newpoint” feature in Knitro is currently only available for continuous
problems (solved via KN_solve()).

•0 (none) Knitro takes no additional action.

•1 (saveone) Knitro writes x and lambda to the file knitro_newpoint.log. Previous contents of the
file are overwritten.

•2 (saveall) Knitro appends x and lambda to the file knitro_newpoint.log. Warning: this option can
generate a very large file. All iterates, including the start point, crossover points, and the final solution are
saved. Each iterate also prints the objective value at the new point, except the initial start point.

Default value: 0

out_csvinfo

KN_PARAM_OUT_CSVINFO

#define KN_PARAM_OUT_CSVINFO 1096
# define KN_OUT_CSVINFO_NO 0
# define KN_OUT_CSVINFO_YES 1

Controls whether or not to generates a file knitro_solve.csv containing solve information in comma
separated format.

•0 (no) No solution information file is generated.

•1 (yes) The knitro_solve.csv solution file is generated.

258 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Default value: 0

out_csvname

KN_PARAM_OUT_CSVNAME

#define KN_PARAM_OUT_CSVNAME 1106

Use to specify a custom csv filename when using out_csvinfo.

Default value: knitro_solve.csv

out_hints

KN_PARAM_OUT_HINTS

#define KN_PARAM_OUT_HINTS 1115
# define KN_OUT_HINTS_NO 0
# define KN_OUT_HINTS_YES 1

Specifies whether to print diagnostic hints (e.g. about user option settings) after solving.

•0 (no) Do not print any hints.

•1 (yes) Print diagnostic hints on occasion.

Default value: 1

outappend

KN_PARAM_OUTAPPEND

#define KN_PARAM_OUTAPPEND 1046
# define KN_OUTAPPEND_NO 0
# define KN_OUTAPPEND_YES 1

Specifies whether output should be started in a new file, or appended to existing files.

The option affects knitro.log and files produced when debug = 1. It does not affect
knitro_newpoint.log, which is controlled by option newpoint.

•0 (no) Erase any existing files when opening for output.

•1 (yes) Append output to any existing files.

Default value: 0

outdir

KN_PARAM_OUTDIR

#define KN_PARAM_OUTDIR 1047

Specifies a single directory as the location to write all output files.

The option should be a full pathname to the directory, and the directory must already exist.

outlev

KN_PARAM_OUTLEV

3.7. Knitro user options 259



Artelys Knitro Documentation, Release 11.0.0

#define KN_PARAM_OUTLEV 1015
# define KN_OUTLEV_NONE 0
# define KN_OUTLEV_SUMMARY 1
# define KN_OUTLEV_ITER_10 2
# define KN_OUTLEV_ITER 3
# define KN_OUTLEV_ITER_VERBOSE 4
# define KN_OUTLEV_ITER_X 5
# define KN_OUTLEV_ALL 6

Controls the level of output produced by Knitro.

•0 (none) Printing of all output is suppressed.

•1 (summary) Print only summary information.

•2 (iter_10) Print basic information every 10 iterations.

•3 (iter) Print basic information at each iteration.

•4 (iter_verbose) Print basic information and the function count at each iteration.

•5 (iter_x) Print all the above, and the values of the solution vector x.

•6 (all) Print all the above, and the values of the constraints c at x and the Lagrange multipliers lambda.

Default value: 2

outmode

KN_PARAM_OUTMODE

#define KN_PARAM_OUTMODE 1016
# define KN_OUTMODE_SCREEN 0
# define KN_OUTMODE_FILE 1
# define KN_OUTMODE_BOTH 2

Specifies where to direct the output from Knitro.

•0 (screen) Output is directed to standard out (e.g., screen).

•1 (file) Output is sent to a file named knitro.log.

•2 (both) Output is directed to both the screen and file knitro.log.

Default value: 0

outname

KN_PARAM_OUTNAME

#define KN_PARAM_OUTNAME 1105

Use to specify a custom filename when output is written to a file using outmode.

Default value: knitro.log

3.7.12 Tuner options

tuner

260 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

KN_PARAM_TUNER

#define KN_PARAM_TUNER 1070
# define KN_TUNER_OFF 0
# define KN_TUNER_ON 1

Indicates whether to invoke the Knitro-Tuner (see The Knitro-Tuner).

•0 (off) Do not invoke the Knitro-Tuner.

•1 (on) Invoke the Knitro-Tuner.

Default value: 0

tuner_maxtime_cpu

KN_PARAM_TUNER_MAXTIMECPU

#define KN_PARAM_TUNER_MAXTIMECPU 1072

Specifies, in seconds, the maximum allowable CPU time before terminating the Knitro-Tuner.

The limit applies to the operation of Knitro since the Knitro-Tuner began. In contrast, the value of
maxtime_cpu places a time limit on each individual Knitro-Tuner solve for a particular option setting. There-
fore, tuner_maxtime_cpu should be greater than maxtime_cpu. This option has no effect unless tuner
= on.

Default value: 1.0e8

tuner_maxtime_real

KN_PARAM_TUNER_MAXTIMEREAL

#define KN_PARAM_TUNER_MAXTIMEREAL 1073

Specifies, in seconds, the maximum allowable real time before terminating the Knitro-Tuner.

The limit applies to the operation of Knitro since the Knitro-Tuner began. In contrast, the value of
maxtime_real places a time limit on each individual Knitro-Tuner solve for a particular option setting.
Therefore, tuner_maxtime_real should be greater than maxtime_real. This option has no effect un-
less tuner = on.

Default value: 1.0e8

tuner_optionsfile

KN_PARAM_TUNER_OPTIONSFILE

#define KN_PARAM_TUNER_OPTIONSFILE 1071

Can be used to specify the location of a Tuner options file (see The Knitro-Tuner).

Default value: NULL

tuner_outsub

KN_PARAM_TUNER_OUTSUB

3.7. Knitro user options 261



Artelys Knitro Documentation, Release 11.0.0

#define KN_PARAM_TUNER_OUTSUB 1074
# define KN_TUNER_OUTSUB_NONE 0
# define KN_TUNER_OUTSUB_SUMMARY 1
# define KN_TUNER_OUTSUB_ALL 2

Enable writing additional Tuner subproblem solve output to files for the Knitro-Tuner procedure (tuner=1).

•0 Do not write detailed solve output to files.

•1 Write summary solve output to a file named knitro_tuner_summary.log.

•2 Write detailed individual solve output to files named knitro_tuner_*.log.

Default value: 0

tuner_terminate

KN_PARAM_TUNER_TERMINATE

#define KN_PARAM_TUNER_TERMINATE 1075
# define KN_TUNER_TERMINATE_ALL 0
# define KN_TUNER_TERMINATE_OPTIMAL 1
# define KN_TUNER_TERMINATE_FEASIBLE 2
# define KN_TUNER_TERMINATE_ANY 3

Define the termination condition for the Knitro-Tuner procedure (tuner=1).

•0 Terminate after all solves have completed.

•1 Terminate at first locally optimal solution.

•2 Terminate at first feasible solution estimate.

•3 Terminate at first solution estimate of any type.

Default value: 0

3.8 List of output files

• knitro.log:

This is the standard output from Knitro. The file is created if outmode = file or outmode = both.

• knitro_mspoints.log:

This file contains a set of feasible points found by multi-start, each distinct, in order of best to worst. The file is
created if ms_enable = yes and ms_num_to_save is greater than zero.

• knitro_newpoint.log:

This file contains a set of iterates generated by Knitro. It is created if newpoint equals saveone or saveall.

• kdbg_barrierIP.log ; kdbg_directIP.log ; kdbg_normalIP.log ; kdbg_profileIP.log
; kdbg_stepIP.log ; kdbg_summIP.log ; kdbg_tangIP.log:

These files contain detailed debug information. The files are created if debug = problem and either barrier
method (Interior/Direct or Interior/CG) executes. The kdbg_directIP.log file is created only for the
Interior/Direct method.

262 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

• kdbg_actsetAS.log ; kdbg_eqpAS.log ; kdbg_lpAS.log ; kdbg_profileAS.log ;
kdbg_stepAS.log ; kdbg_summAS.log:

These files contain detailed debug information. The files are created if debug = problem and the Active Set
method executes.

• kdbg_mip.log:

This file contains detailed debug information. The file is created if mip_debug = all and one of the MIP
methods executes.

• knitro_ma_*.log:

This file contains detailed algorithm output for each algorithm run in the multi-algorithm procedure (alg=5)
when ma_outsub=1. The “*” in the filename represents the algorithm number.

• knitro_ms_*.log:

This file contains detailed algorithm output for each subproblem solve in the parallel multi-start procedure when
ms_outsub=1. The “*” in the filename represents the multi-start subproblem solve number.

• knitro_tuner_summary.log, knitro_tuner_summary.csv, knitro_tuner_*.log:

These files contain detailed algorithm output for each subproblem solve in the Knitro-Tuner procedure
when tuner_outsub=2. The “*” in the filename represents the Tuner subproblem solve number. If
tuner_outsub=1 then only the summary files are generated.

3.9 Knitro 10.x and Earlier Callable Library API

All functions offered by the Knitro callable library are listed here.

3.9.1 Creating and destroying solver objects

KTR_new()

KTR_context_ptr KNITRO_API KTR_new (void);

This function must be called first. It returns a pointer to an object (the Knitro “context pointer”) that is used in all
other calls. If you enable Knitro with the floating network license handler, then this call also checks out a license and
reserves it until KTR_free() is called with the context pointer, or the program ends. The contents of the context
pointer should never be modified by a calling program. Returns NULL on error.

KTR_new_puts()

KTR_context_ptr KNITRO_API KTR_new_puts (KTR_puts * const fnPtr,
void * const userParams);

This function is similar to KTR_new(), but also takes an argument that sets a “put string” callback func-
tion to handle output generated by the Knitro solver, and a pointer for passing user-defined data. See
KTR_set_puts_callback() for more information. Returns NULL on error.

Call KTR_new() or KTR_new_puts() first. Either returns a pointer to the solver object that is used in all other
Knitro API calls. A new Knitro license is acquired and held until KTR_free() has been called, or until the calling
program ends.

KTR_free()

3.9. Knitro 10.x and Earlier Callable Library API 263



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KTR_free (KTR_context_ptr * kc_handle);

This function should be called last and will free the context pointer. The address of the context pointer is passed so
that Knitro can set it to NULL after freeing all memory. This prevents the application from mistakenly calling Knitro
functions after the context pointer has been freed. Returns 0 if OK, nonzero if error.

3.9.2 Changing and reading solver parameters

Parameters cannot be set after Knitro begins solving; ie, after the KTR_solve() function is called. They may be set
again after calling KTR_restart().

Note: The gradopt and hessopt user options must be set before calling KTR_init_problem() or
KTR_lsq_init_problem() or KTR_mip_init_problem(), and cannnot be changed after calling these
functions.

All methods return 0 if OK, nonzero if there was an error. In most cases, parameter values are not validated until
KTR_init_problem() or KTR_solve() is called.

KTR_reset_params_to_defaults()

int KNITRO_API KTR_reset_params_to_defaults (KTR_context_ptr kc);

Reset all parameters to default values.

KTR_load_param_file()

int KNITRO_API KTR_load_param_file
(KTR_context_ptr kc, const char * const filename);

Set all parameters specified in the given file.

KTR_save_param_file()

int KNITRO_API KTR_save_param_file
(KTR_context_ptr kc, const char * const filename);

Write all current parameter values to a file.

KTR_set_int_param_by_name()

int KNITRO_API KTR_set_int_param_by_name
(KTR_context_ptr kc, const char * const name, const int value);

Set an integer valued parameter using its string name.

KTR_set_char_param_by_name()

int KNITRO_API KTR_set_char_param_by_name
(KTR_context_ptr kc, const char * const name, const char * const value);

Set a character valued parameter using its string name.

KTR_set_double_param_by_name()

int KNITRO_API KTR_set_double_param_by_name
(KTR_context_ptr kc, const char * const name, const double value);

264 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

Set a double valued parameter using its string name.

KTR_set_param_by_name()

int KNITRO_API KTR_set_param_by_name
(KTR_context_ptr kc, const char * const name, const double value);

Set an integer or double valued parameter using its string name.

KTR_set_int_param()

int KNITRO_API KTR_set_int_param
(KTR_context_ptr kc, const int param_id, const int value);

Set an integer valued parameter using its integer identifier (see Knitro user options).

KTR_set_char_param()

int KNITRO_API KTR_set_char_param
(KTR_context_ptr kc, const int param_id, const char * const value);

Set a character valued parameter using its integer identifier (see Knitro user options).

KTR_set_double_param()

int KNITRO_API KTR_set_double_param
(KTR_context_ptr kc, const int param_id, const double value);

Set a double valued parameter using its integer identifier (see Knitro user options).

KTR_get_int_param_by_name()

int KNITRO_API KTR_get_int_param_by_name
(KTR_context_ptr kc, const char * const name, int * const value);

Get an integer valued parameter using its string name.

KTR_get_double_param_by_name()

int KNITRO_API KTR_get_double_param_by_name
(KTR_context_ptr kc, const char * const name, double * const value);

Get a double valued parameter using its string name.

KTR_get_int_param()

int KNITRO_API KTR_get_int_param
(KTR_context_ptr kc, const int param_id, int * const value);

Get an integer valued parameter using its integer identifier (see Knitro user options).

KTR_get_double_param()

int KNITRO_API KTR_get_double_param
(KTR_context_ptr kc, const int param_id, double * const value);

Get a double valued parameter using its integer identifier (see Knitro user options).

KTR_get_param_name()

3.9. Knitro 10.x and Earlier Callable Library API 265



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KTR_get_param_name
( KTR_context_ptr kc,
const int param_id,

char * const param_name,
const size_t output_size);

Sets the string param_name to the name of parameter indexed by integer identifier param_id (see Knitro user
options) and returns 0. Returns an error if param_id does not correspond to any parameter, or if the parameter
output_size (the size of char array param_name) is less than the size of the parameter’s description.

KTR_get_param_doc()

int KNITRO_API KTR_get_param_doc
( KTR_context_ptr kc,
const int param_id,

char * const description,
const size_t output_size);

Sets the string description to the description of the parameter indexed by integer identifier param_id (see Knitro user
options) and its possible values and returns 0. Returns an error if param_id does not correspond to any parameter,
or if the parameter output_size (the size of char array description) is less than the size of the parameter’s
description.

KTR_get_param_type()

int KNITRO_API KTR_get_param_type
( KTR_context_ptr kc,
const int param_id,

int * const param_type);

Sets the int * param_type to the type of the parameter indexed by integer identifier param_id (see Knitro user
options). Possible values are KTR_PARAMTYPE_INT, KTR_PARAMTYPE_FLOAT, KTR_PARAMTYPE_STRING.
Returns an error if param_id does not correspond to any parameter.

KTR_get_num_param_values()

int KNITRO_API KTR_get_num_param_values
( KTR_context_ptr kc,
const int param_id,

int * const num_param_values);

Set the int * num_param_values to the number of possible parameter values for the parameter indexed by
integer identifier param_id and returns 0. If there is not a finite number of possible values, num_param_values
will be zero. Returns an error if param_id does not correspond to any parameter.

KTR_get_param_value_doc()

int KNITRO_API KTR_get_param_value_doc
( KTR_context_ptr kc,
const int param_id,
const int value_id,

char * const param_value_string,
const size_t output_size);

Set string param_value_string to the description of the parameter value indexed by
[param_id][value_id]. Returns an error if param_id does not correspond to any parameter, or if
value_id is greater than the number of possible parameter values, or if there are not a finite number of possible

266 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

parameter values, or if the parameter output_size (the size of char array param_value_string) is less than
the size of the parameter’s description.

KTR_get_param_id()

int KNITRO_API KTR_get_param_id
( KTR_context_ptr kc,
const char * const name,

int * const param_id);

Gets the integer value corresponding to the parameter name input and copies it into param_id input. Returns zero
if successful and an error code otherwise.

KTR_get_release()

void KNITRO_API KTR_get_release(const int length, char * const release);

Copy the Knitro release name into release. This variable must be preallocated to have length elements, including
the string termination character. For compatibility with future releases, please allocate at least 15 characters.

KTR_load_tuner_file()

int KNITRO_API KTR_load_tuner_file
(KTR_context_ptr kc, const char * const filename);

Similar to KTR_load_param_file() but specifically allows user to specify a file of options (and option values)
to explore for the Knitro-Tuner (see The Knitro-Tuner).

KTR_set_feastols()

int KNITRO_API KTR_set_feastols
( KTR_context_ptr kc,
const double * const cFeasTols,
const double * const xFeasTols,
const double * const ccFeasTols);

Set an array of absolute feasibility tolerances (one for each constraint and variable) to use for the termination
tests. The user options KTR_PARAM_FEASTOL / KTR_PARAM_FEASTOLABS define a single tolerance that is
applied equally to every constraint and variable. This API function allows the user to specify separate feasibil-
ity termination tolerances for each constraint and variable. Values specified through this function will override
the value determined by KTR_PARAM_FEASTOL / KTR_PARAM_FEASTOLABS. The tolerances should be posi-
tive values. If a non-positive value is specified, that constraint or variable will use the standard tolerances based on
KTR_PARAM_FEASTOL / KTR_PARAM_FEASTOLABS. Array cFeasTols has length m, array xFeasTols has
length n, and array ccFeasTols has length ncc, where ncc is the number of complementarity constraints added
through KTR_set_compcons(). The regular constraints are considered to be satisfied when:

c[i] - cUpBnds[i] <= cFeasTols[i] for all i=1..m, and
cLoBnds[i] - c[i] <= cFeasTols[i] for all i=1..m.

The variables are considered to be satisfied when:

x[i] - xUpBnds[i] <= xFeasTols[i] for all i=1..n, and
xLoBnds[i] - x[i] <= xFeasTols[i] for all i=1..n.

The complementarity constraints are considered to be satisfied when:

min(x1_i, x2_i) <= ccFeasTols[i] for all i=1..ncc,

3.9. Knitro 10.x and Earlier Callable Library API 267



Artelys Knitro Documentation, Release 11.0.0

where x1 and x2 are the arrays of complementary pairs. If there are no regular (or complementarity) constraints
set cFeasTols=NULL (or ccFeasTols=NULL). If cFeasTols/xFeasTols/ccFeasTols=NULL, then the
standard tolerances will be used. Knitro makes a local copy of all inputs, so the application may free memory after
the call. This routine must be called after calling KTR_init_problem() / KTR_lsq_init_problem() /
KTR_mip_init_problem() and after any calls to KTR_set_compcons(). It must be called before calling
KTR_solve() / KTR_mip_solve(). Returns 0 if OK, nonzero if error.

KTR_set_var_scalings()

int KNITRO_API KTR_set_var_scalings
( KTR_context_ptr kc,
const double * const xScaleFactors,
const double * const xScaleCenters);

Set an array of variable scaling and centering values (one for each variable) to perform a linear scaling:

x[i] = xScaleFactors[i] * xScaled[i] + xScaleCenters[i]

for each variable. These scaling factors should try to represent the “typical” values of the x variables so that the
scaled variables (xScaled) used internally by Knitro are close to one. The values for xScaleFactors should be
positive. If a non-positive value is specified, that variable will not be scaled. This routine must be called after calling
KTR_init_problem() / KTR_lsq_init_problem() / KTR_mip_init_problem() and before calling
KTR_solve() / KTR_mip_solve(). Returns 0 if OK, nonzero if error.

KTR_set_con_scalings()

int KNITRO_API KTR_set_con_scalings
( KTR_context_ptr kc,
const double * const cScaleFactors,
const double * const ccScaleFactors);

Set an array of constraint scaling values (one for each constraint) to perform a scaling:

cScaled[i] = cScaleFactors[i] * c[i]

for each constraint. These scaling factors should try to represent the “typical” values of the inverse of the con-
straint values c so that the scaled constraints (cScaled) used internally by Knitro are close to one. Scaling fac-
tors for standard constraints can be provided with cScaleFactors, while scalings for complementarity con-
straints can be specified with ccScaleFactors. The values for cScaleFactors / ccScaleFactors
should be positive. If a non-positive value is specified, that constraint will use either the standard Knitro scaling
(KTR_SCALE_USER_INTERNAL), or no scaling (KTR_SCALE_USER_NONE). This routine must be called after
calling KTR_init_problem() / KTR_lsq_init_problem() / KTR_mip_init_problem() and before
calling KTR_solve() / KTR_mip_solve(). Returns 0 if OK, nonzero if error.

KTR_set_obj_scaling()

int KNITRO_API KTR_set_obj_scaling
( KTR_context_ptr kc,
const double objScaleFactor);

Set a scaling value for the objective function:

objScaled = objScaleFactor * obj

This scaling factor should try to represent the “typical” value of the inverse of the objective function value obj so
that the scaled objective (objScaled) used internally by Knitro is close to one. The value for objScaleFactor
should be positive. If a non-positive value is specified, then the objective will use either the standard Knitro scaling
(KTR_SCALE_USER_INTERNAL), or no scaling (KTR_SCALE_USER_NONE). This routine must be called after

268 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

calling KTR_init_problem() / KTR_lsq_init_problem() / KTR_mip_init_problem() and before
calling KTR_solve() / KTR_mip_solve(). Returns 0 if OK, nonzero if error.

KTR_set_names()

int KNITRO_API KTR_set_names
( KTR_context_ptr kc,
const char * const objName,

char * const varNames[],
char * const conNames[]);

Set names for model components passed in by the user/modeling language so that Knitro can internally print out these
names. Knitro makes a local copy of all inputs, so the application may free memory after the call. This routine must be
called after calling KTR_init_problem() / KTR_lsq_init_problem() / KTR_mip_init_problem()
and before calling KTR_solve() / KTR_mip_solve(). Returns 0 if OK, nonzero if error.

KTR_set_linearvars()

int KNITRO_API KTR_set_linearvars
( KTR_context_ptr kc,
const int * const linearVars);

This API function can be used to identify which variables only appear linearly in the model (KTR_LINEARVAR_YES).
This information can be used by Knitro to perform more extensive preprocessing. If a variable appears nonlinearly
in any constraint or the objective (or if the user does not know) then it should be marked as KTR_LINEARVAR_NO.
Knitro makes a local copy of all inputs, so the application may free memory after the call. This routine must be
called after calling KTR_init_problem() / KTR_lsq_init_problem() / KTR_mip_init_problem()
and before calling KTR_solve() / KTR_mip_solve(). Returns 0 if OK, nonzero if error.

KTR_set_honorbnds()

int KNITRO_API KTR_set_honorbnds
( KTR_context_ptr kc,
const int * const honorBnds);

This API function can be used to identify which variables should satisfy their variable bounds through-
out the optimization process (KTR_HONORBNDS_ALWAYS). The user option KTR_PARAM_HONORBNDS can
be used to set ALL variables to honor their bounds. This routine takes precedence over the setting of
KTR_PARAM_HONORBNDS and is used to customize the settings for individual variables. Knitro makes a local
copy of all inputs, so the application may free memory after the call. This routine must be called after calling
KTR_init_problem() / KTR_lsq_init_problem() / KTR_mip_init_problem() and before calling
KTR_solve() / KTR_mip_solve(). Returns 0 if OK, nonzero if error.

3.9.3 Problem modification

KTR_set_compcons()

int KNITRO_API KTR_set_compcons (KTR_context_ptr kc,
const int numCompConstraints,
const int * const indexList1,
const int * const indexList2);

This function adds complementarity constraints to the problem. It must be called after KTR_init_problem() and
before KTR_solve(). The two lists are of equal length, and contain matching pairs of variable indices. Each pair
defines a complementarity constraint between the two variables. The function can only be called once to set all the
complementarity constraints in the model at one time. Returns 0 if OK, or a negative value on error.

3.9. Knitro 10.x and Earlier Callable Library API 269



Artelys Knitro Documentation, Release 11.0.0

KTR_chgvarbnds()

int KNITRO_API KTR_chgvarbnds ( KTR_context_ptr kc,
const double * const xLoBnds,
const double * const xUpBnds);

This function prepares Knitro to re-optimize the current problem after modifying the variable bounds from a previous
solve. The arrays xLoBnds and xUpBnds have the same meaning as in KTR_init_problem() and must be spec-
ified completely. This function must be called after KTR_init_problem() and precedes a call to KTR_solve().
Returns 0 if OK, nonzero if error.

3.9.4 Solving

Problem structure is passed to Knitro using KTR_init_problem(). Functions KTR_solve() and
KTR_mip_solve() have the same parameter list. Function KTR_solve() should be used for models where
all the variables are continuous, while KTR_mip_solve() should be used for models with one or more binary or
integer variables.

Applications must provide a means of evaluating the nonlinear objective, constraints, first derivatives, and (optionally)
second derivatives. (First derivatives are also optional, but highly recommended.) A single call to KTR_solve()

The typical calling sequence is:

KTR_new
KTR_set_xxx_callback (set all the necessary callbacks)
KTR_init_problem
KTR_set_xxx_param (set any number of parameters)
KTR_solve
KTR_free

Calling sequence if the same problem is to be solved again, with different parameters, a different start point, or a
change to the bounds on the variables:

KTR_new
KTR_set_xxx_callback (set all the necessary callbacks)
KTR_init_problem
KTR_set_xxx_param (set any number of parameters)
KTR_solve
KTR_restart (if changing the initial point or some user parameters)
KTR_chgvarbnds (if modifying variable bounds)
KTR_set_xxx_param (set any number of parameters)
KTR_solve
KTR_free

Note: KTR_set_xxx_param() may also be called before KTR_init_problem() (and gradopt and
hessopt must be set before KTR_init_problem() and remain constant).

API

KTR_init_problem()

int KNITRO_API KTR_init_problem (KTR_context_ptr kc,
const int n,

270 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

const int objGoal,
const int objType,
const double * const xLoBnds,
const double * const xUpBnds,
const int m,
const int * const cType,
const double * const cLoBnds,
const double * const cUpBnds,
const int nnzJ,
const int * const jacIndexVars,
const int * const jacIndexCons,
const int nnzH,
const int * const hessIndexRows,
const int * const hessIndexCols,
const double * const xInitial,
const double * const lambdaInitial);

These functions pass the optimization problem definition to Knitro, where it is copied and stored internally until
KTR_free() is called. Once initialized, the problem may be solved any number of times with different user op-
tions or initial points (see the KTR_restart() call below). Array arguments passed to KTR_init_problem(),
KTR_lsq_init_problem() or KTR_mip_init_problem() are not referenced again and may be freed or
reused if desired. In the description below, some programming macros are mentioned as alternatives to fixed numeric
constants; e.g., KTR_OBJGOAL_MINIMIZE. These macros are defined in knitro.h. Returns 0 if OK, nonzero if
error.

Arguments:

• kc is the Knitro context pointer. Do not modify its contents.

• n is a scalar specifying the number of variables in the problem; i.e., the length of x.

• objGoal is the optimization goal (see KTR_OBJGOAL_MINIMIZE, KTR_OBJGOAL_MAXIMIZE).

• objType is a scalar that describes the type of objective function f(x) (see KTR_OBJTYPE_GENERAL,
KTR_OBJTYPE_LINEAR, KTR_OBJTYPE_QUADRATIC, KTR_OBJTYPE_CONSTANT).

• xLoBnds is an array of length n specifying the lower bounds on x. xLoBnds[i] must be set to the lower bound of
the corresponding i-th variable 𝑥𝑖. If the variable has no lower bound, set xLoBnds[i] to be -KTR_INFBOUND.
For binary variables, set xLoBnds[i]=0.

• xUpBnds is an array of length n specifying the upper bounds on x. xUpBnds[i] must be set to the upper bound
of the corresponding i-th variable. If the variable has no upper bound, set xUpBnds[i] to be KTR_INFBOUND.
For binary variables, set xUpBnds[i]=1.

Note: If xLoBnds or xUpBnds are NULL, then Knitro assumes all variables are unbounded in that direction.

• m is a scalar specifying the number of constraints c(x).

• cType is an array of length m that describes the types of the constraint functions c(x) (see
KTR_CONTYPE_GENERAL, KTR_CONTYPE_LINEAR, KTR_CONTYPE_QUADRATIC).

• cLoBnds is an array of length m specifying the lower bounds on the constraints c(x) . cLoBnds[i] must be set to
the lower bound of the corresponding i-th constraint. If the constraint has no lower bound, set cLoBnds[i] to be
-KTR_INFBOUND. If the constraint is an equality, then cLoBnds[i] should equal cUpBnds[i].

• cUpBnds is an array of length m specifying the upper bounds on the constraints c(x) . cUpBnds[i] must be set
to the upper bound of the corresponding i-th constraint. If the constraint has no upper bound, set cUpBnds[i] to
be KTR_INFBOUND. If the constraint is an equality, then cLoBnds[i] should equal cUpBnds[i].

3.9. Knitro 10.x and Earlier Callable Library API 271



Artelys Knitro Documentation, Release 11.0.0

• nnzJ is a scalar specifying the number of nonzero elements in the sparse constraint Jacobian.

• jacIndexVars is an array of length nnzJ specifying the variable indices of the constraint Jacobian nonzeros. If
jacIndexVars[i]=j, then jac[i] refers to the j-th variable, where jac is the array of constraint Jacobian nonzero
elements passed in the call to KTR_solve().

jacIndexCons[i] and jacIndexVars[i] determine the row numbers and the column numbers, respectively, of the
nonzero constraint Jacobian element jac[i].

Note: C array numbering starts with index 0. Therefore, the j-th variable 𝑥𝑗 maps to array element x[j], and 0 ≤ 𝑗 <
𝑛.

• jacIndexCons is an array of length nnzJ specifying the constraint indices of the constraint Jacobian nonzeros. If
jacIndexCons[i]=k, then jac[i] refers to the k-th constraint, where jac is the array of constraint Jacobian nonzero
elements passed in the call to KTR_solve().

jacIndexCons[i] and jacIndexVars[i] determine the row numbers and the column numbers, respectively, of the
nonzero constraint Jacobian element jac[i].

Note: C array numbering starts with index 0. Therefore, the k-th constraint 𝑐𝑘 maps to array element c[k], and
0 ≤ 𝑘 < 𝑚.

• nnzH is a scalar specifying the number of nonzero elements in the sparse Hessian of the Lagrangian. Only
nonzeros in the upper triangle (including diagonal nonzeros) should be counted.

Note: If user option hessopt is not set to KTR_HESSOPT_EXACT, then Hessian nonzeros will not be used. In this
case, set nnzH=0, and pass NULL pointers for hessIndexRows and hessIndexCols.

• hessIndexRows is an array of length nnzH specifying the row number indices of the Hessian nonzeros.

hessIndexRows[i] and hessIndexCols[i] determine the row numbers and the column numbers, respectively,
of the nonzero Hessian element hess[i], where hess is the array of Hessian elements passed in the call
KTR_solve().

Note: Row numbers are in the range 0 , ... , n - 1.

• hessIndexCols is an array of length nnzH specifying the column number indices of the Hessian nonzeros.

hessIndexRows[i] and hessIndexCols[i] determine the row numbers and the column numbers, respectively,
of the nonzero Hessian element hess[i], where hess is the array of Hessian elements passed in the call to
KTR_solve().

Note: Column numbers are in the range 0 , ... , n - 1.

• xInitial is an array of length n containing an initial guess of the solution vector x. If the application prefers to let
Knitro make an initial guess, then pass a NULL pointer for xInitial.

• lambdaInitial is an array of length m+n containing an initial guess of the Lagrange multipliers for the constraints
c(x) and bounds on the variables x. The first m components of lambdaInitial are multipliers corresponding to
the constraints specified in c(x), while the last n components are multipliers corresponding to the bounds on x.
If the application prefers to let Knitro make an initial guess, then pass a NULL pointer for lambdaInitial.

272 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

KTR_solve()

int KNITRO_API KTR_solve ( KTR_context_ptr kc,
double * const x,
double * const lambda,

const int evalStatus,
double * const obj,

const double * const c,
double * const objGrad,
double * const jac,

const double * const hess,
double * const hessVector,
void * const userParams);

Arguments:

• kc is the Knitro context pointer. Do not modify its contents.

• x is an array of length n output by Knitro. If KTR_solve() returns
KTR_RC_OPTIMAL_OR_SATISFACTORY, then x contains the solution.

Reverse communications mode (deprecated): upon return, x contains the value of unknowns at which
Knitro needs more problem information. For continuous problems, if user option newpoint is set to
KTR_NEWPOINT_USER and KTR_solve() returns KTR_RC_NEWPOINT, then x contains a newly accepted
iterate, but not the final solution.

• lambda is an array of length m+n output by Knitro. If KTR_solve() returns zero, then lambda contains
the multiplier values at the solution. The first m components of lambda are multipliers corresponding to the
constraints specified in c(x), while the last n components are multipliers corresponding to the bounds on x.

Reverse communications mode (deprecated): upon return, lambda contains the value of multipliers at which
Knitro needs more problem information.

• evalStatus is a scalar input to Knitro used only in reverse communications mode (deprecated). A value of zero
means the application successfully computed the problem information requested by Knitro at x and lambda. A
nonzero value means the application failed to compute problem information (e.g., if a function is undefined at
the requested value x). Set to 0 for callback mode.

• obj is a scalar holding the value of f(x) at the current x. If KTR_solve() returns
KTR_RC_OPTIMAL_OR_SATISFACTORY, then obj contains the value of the objective function f(x) at
the solution.

• c is an array of length m used only in reverse communications mode (deprecated). Set to NULL for callback
mode.

• objGrad is an array of length n used only in reverse communications mode (deprecated). Set to NULL for
callback mode.

• jac is an array of length nnzJ used only in reverse communications mode (deprecated). Set to NULL for
callback mode.

• hess is an array of length nnzH used only in reverse communications mode (deprecated), and only if option
hessopt is set to KTR_HESSOPT_EXACT. Set to NULL for callback mode.

• hessVector is an array of length n used only in reverse communications mode (deprecated), and only if option
hessopt is set to KTR_HESSOPT_PRODUCT. Set to NULL for callback mode.

• userParams is a pointer to a structure used in callback functions. The pointer is provided so the application can
pass additional parameters needed for its callback routines. If the application needs no additional parameters,
then pass a NULL pointer.

3.9. Knitro 10.x and Earlier Callable Library API 273



Artelys Knitro Documentation, Release 11.0.0

The return value of KTR_solve() and KTR_mip_solve() specifies the final exit code from the optimization
process. A detailed description of the possible return values is given in Return codes.

KTR_restart()

int KNITRO_API KTR_restart (KTR_context_ptr kc,
const double * const xInitial,
const double * const lambdaInitial);

This function can be called to start another KTR_solve() sequence after making small modifications. The prob-
lem structure cannot be changed (e.g., KTR_init_problem() cannot be called between KTR_solve() and
KTR_restart()). However, user options (with the exception of gradopt and hessopt) can be modified, and a
new initial value can be passed with KTR_restart(). Knitro parameter values are not changed by this call. The
sample program examples/C/restartExample.c uses KTR_restart() to solve the same problem from the
same start point, but each time changing the interior point bar_murule option to a different value. Returns 0 if OK,
nonzero if error.

Note: If output to a file is enabled, this will erase the current file.

KTR_lsq_init_problem()

int KNITRO_API KTR_lsq_init_problem(KTR_context_ptr kc,
const int n,
const double * const xLoBnds,
const double * const xUpBnds,
const int m,
const int * const rType,
const int nnzJ,
const int * const jacIndexVars,
const int * const jacIndexRes,
const double * const xInitial,
const double * const lambdaInitial);

KTR_lsq_init_problem() is used to initialize a nonlinear least squares problem.

This function only varies from KTR_init_problem() by the use of arguments specific to least squares problems,
namely:

• m is the number of residuals

• rType is an array of length m that describes the types of the residuals (KTR_RESTYPE_GENERAL or
KTR_RESTYPE_LINEAR)

Returns 0 if OK, nonzero if error.

KTR_mip_init_problem()

int KNITRO_API KTR_mip_init_problem( KTR_context_ptr kc,
const int n,
const int objGoal,
const int objType,
const int objFnType,
const int * const xType,
const double * const xLoBnds,
const double * const xUpBnds,
const int m,
const int * const cType,
const int * const cFnType,

274 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

const double * const cLoBnds,
const double * const cUpBnds,
const int nnzJ,
const int * const jacIndexVars,
const int * const jacIndexCons,
const int nnzH,
const int * const hessIndexRows,
const int * const hessIndexCols,
const double * const xInitial,
const double * const lambdaInitial);

See KTR_init_problem() above. The only difference is the addition of the following arguments.

• objFnType is a scalar that describes the convexity status of the objective function f(x) (MIP only; see
KTR_FNTYPE_UNCERTAIN, KTR_FNTYPE_CONVEX, KTR_FNTYPE_NONCONVEX).

• xType is an array of length n that describes the types of variables x (MIP only; see
KTR_VARTYPE_CONTINUOUS, KTR_VARTYPE_INTEGER, KTR_VARTYPE_BINARY).

• cFnType is an array of length m that describes the convexity status of the constraint functions c(x) (MIP only;
see KTR_FNTYPE_UNCERTAIN, KTR_FNTYPE_CONVEX, KTR_FNTYPE_NONCONVEX).

Returns 0 if OK, nonzero if error.

KTR_mip_set_branching_priorities()

int KNITRO_API KTR_mip_set_branching_priorities(KTR_context_ptr kc,
const int * const xPriorities);

This function can be used to set the branching priorities for integer variables when using the MIP features in Knitro.
Priorities must be positive numbers (variables with non-positive values are ignored). Variables with higher priority
values will be considered for branching before variables with lower priority values. When priorities for a subset of
variables are equal, the branching rule is applied as a tiebreaker. Array xPriorities has length n, and values for contin-
uous variables are ignored. Knitro makes a local copy of all inputs, so the application may free memory after the call.
This routine must be called after calling KTR_mip_init_problem() and before calling KTR_mip_solve().
Returns 0 if OK, nonzero if error.

KTR_mip_set_intvar_strategy()

int KNITRO_API KTR_mip_set_intvar_strategy
( KTR_context_ptr kc,
const int xIndex,
const int xStrategy);

Set strategies for dealing with individual integer variables. Possible strategy values include:

KTR_MIP_INTVAR_STRATEGY_NONE 0
KTR_MIP_INTVAR_STRATEGY_RELAX 1
KTR_MIP_INTVAR_STRATEGY_MPEC 2

The parameter xIndex should be an index value corresponding to an integer variable (nothing is done if the
index value corresponds to a continuous variable), and xStrategy should correspond to one of the strat-
egy values listed above. The default strategy is KTR_MIP_INTVAR_STRATEGY_NONE, and the strategy
KTR_MIP_INTVAR_STRATEGY_MPEC can only be applied to binary variables. This routine must be called af-
ter calling KTR_mip_init_problem() and before calling KTR_mip_solve(). Returns 0 if OK, nonzero if
error.

KTR_mip_solve()

3.9. Knitro 10.x and Earlier Callable Library API 275



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KTR_mip_solve( KTR_context_ptr kc,
double * const x,
double * const lambda,

const int evalStatus,
double * const obj,
double * const c,
double * const objGrad,
double * const jac,
double * const hess,
double * const hessVector,
void * const userParams);

Call Knitro to solve the MIP problem, similar to KTR_solve().

Returns one of the status codes “KTR_RC_*” (see Return codes).

KTR_set_findiff_relstepsizes()

int KNITRO_API KTR_set_findiff_relstepsizes
( KTR_context_ptr kc,
const double * const relStepSizes);

Set an array of relative stepsizes to use for the finite-difference gradient/Jacobian computations when using finite-
difference first derivatives. Finite-difference step sizes “delta” in Knitro are computed as:

delta[i] = relStepSizes[i]*max(abs(x[i]),1);

The default relative step sizes for each component of x are sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences. Use this function to overwrite the default values. Array relStepSizes has length n. Any
zero values will use Knitro default values, while non-zero values will overwrite default values. If relStepSizes
is set to NULL, then default Knitro values will be used. Knitro makes a local copy of all inputs, so the application
may free memory after the call. This routine must be called after calling KTR_init_problem() and before calling
KTR_solve(). Returns 0 if OK, nonzero if error.

3.9.5 Callbacks

To solve a nonlinear optimization problem, Knitro needs the application to supply information at various trial points.
Knitro specifies a trial point with a new vector of variable values x, and sometimes a corresponding vector of Lagrange
multipliers 𝜆. This information needs to be provided by the application through callback functions. The application
provides C language function pointers that Knitro may call to evaluate the functions, gradients, and Hessians at the
trial points.

For simplicity, the callback functions

• KTR_set_func_callback

• KTR_set_grad_callback

• KTR_set_hess_callback

• KTR_set_ms_process_callback

• KTR_set_mip_node_callback

(described in detail below) all use the same KTR_callback() function prototype defined here.

typedef int KTR_callback (const int evalRequestCode,
const int n,
const int m,

276 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

const int nnzJ,
const int nnzH,
const double * const x,
const double * const lambda,

double * const obj,
double * const c,
double * const objGrad,
double * const jac,
double * const hessian,
double * const hessVector,
void * userParams);

At a trial point, Knitro may ask the application to:

• evaluate 𝑓(𝑥) and 𝑐(𝑥) at x (KTR_RC_EVALFC).

• evaluate ∇𝑓(𝑥) and ∇𝑐(𝑥) at x (KTR_RC_EVALGA).

• evaluate the Hessian matrix of the problem at x and 𝜆 normally (KTR_RC_EVALH), or without the objective
component included (KTR_RC_EVALH_NO_F).

• evaluate the Hessian matrix times a vector v at x and 𝜆 normally (KTR_RC_EVALHV), or without the objective
component included (KTR_RC_EVALHV_NO_F).

The constants KTR_RC_* are return codes defined in knitro.h and listed in Return codes.

The argument lambda is not defined when requesting KTR_RC_EVALFC or KTR_RC_EVALGA. Usually, applications
define three callback functions, one for KTR_RC_EVALFC, one for KTR_RC_EVALGA, and one for KTR_RC_EVALH
/ KTR_RC_EVALHV. It is possible to combine KTR_RC_EVALFC and KTR_RC_EVALGA into a single function,
because x changes only for an KTR_RC_EVALFC request. This is advantageous if the application evaluates func-
tions and their derivatives at the same time. Pass the same callback function in KTR_set_func_callback()
and KTR_set_grad_callback(), have it populate obj, c, objGrad, and jac for an KTR_RC_EVALFC request,
and do nothing for an KTR_RC_EVALGA request. Do not combine KTR_RC_EVALFC and KTR_RC_EVALGA
if hessopt = KTR_HESSOPT_PRODUCT_FINDIFF, because the finite difference Hessian changes x and calls
KTR_RC_EVALGA without calling KTR_RC_EVALFC first. It is not possible to combine KTR_RC_EVALH /
KTR_RC_EVALHV because lambda changes after the KTR_RC_EVALFC call.

The userParams argument is an arbitrary pointer passed from the Knitro KTR_solve() call to the callback. It should
be used to pass parameters defined and controlled by the application, or left null if not used. Knitro does not modify
or dereference the userParams pointer.

Callbacks should return 0 if successful, a negative error code if not. Possible unsuccessful (negative) error codes for
the “func”, “grad”, and “hess” callback functions include KTR_RC_CALLBACK_ERR (for generic callback errors),
and KTR_RC_EVAL_ERR (for evaluation errors, e.g log(-1)).

In addition, for the “func”, “newpoint”, “ms_process” and “mip_node” callbacks, the user may set the
KTR_RC_USER_TERMINATION return code to force Knitro to terminate based on some user-defined condition.

KTR_set_func_callback()

int KNITRO_API KTR_set_func_callback (KTR_context_ptr kc,
KTR_callback * const fnPtr);

Set the callback function that evaluates obj and c at x. It may also evaluate objGrad and jac if KTR_RC_EVALFC and
KTR_RC_EVALGA are combined into a single call. Do not modify hessian or hessVector.

KTR_set_grad_callback()

3.9. Knitro 10.x and Earlier Callable Library API 277



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KTR_set_grad_callback (KTR_context_ptr kc,
KTR_callback * const fnPtr);

Set the callback function that evaluates objGrad and jac at x. It may do nothing if KTR_RC_EVALFC and
KTR_RC_EVALGA are combined into a single call. Do not modify hessian or hessVector.

KTR_set_hess_callback()

int KNITRO_API KTR_set_hess_callback (KTR_context_ptr kc,
KTR_callback * const fnPtr);

Set the callback function that evaluates second derivatives at (x, lambda). If evalRequestCode equals
KTR_RC_EVALH, then the function must return nonzeros in hessian. If it equals KTR_RC_EVALHV, then the function
multiplies second derivatives by hessVector and returns the product in hessVector. Do not modify obj, c, objGrad, or
jac.

KTR_set_newpt_callback()

typedef int KTR_newpt_callback (KTR_context_ptr kc,
const int n,
const int m,
const int nnzJ,
const double * const x,
const double * const lambda,
const double obj,
const double * const c,
const double * const objGrad,
const double * const jac,

void * userParams);

int KNITRO_API KTR_set_newpt_callback (KTR_context_ptr kc,
KTR_newpt_callback * const fnPtr);

Set the callback function that is invoked after Knitro computes a new estimate of the solution point (i.e., after ev-
ery major iteration). The function should not modify any Knitro arguments. Argument kc is the context pointer
for the current problem being solved inside Knitro (either the main single-solve problem, or a subproblem when us-
ing multi-start, Tuner, etc.). This can then be used to call Knitro functions to get problem information from within
the callback. Arguments x and lambda contain the new point and values. Arguments obj and c contain objective
and constraint values at x, and objGrad and jac contain the objective gradient and constraint Jacobian at x. The
user may use KTR_RC_USER_TERMINATION as a return value to stop the execution (for example, if the new
point matches a criteria calculated in KTR_newpt_callback). In this case the Knitro final return code will be
KTR_RC_USER_TERMINATION (“Knitro has been terminated by the user”).

KTR_set_ms_process_callback()

int KNITRO_API KTR_set_ms_process_callback (KTR_context_ptr kc,
KTR_callback * const fnPtr);

This callback function is for multistart (MS) problems only. Set the callback function that is invoked after Knitro
finishes processing a multistart solve. The function should not modify any Knitro arguments. Arguments x and
lambda contain the solution from the last solve. Arguments obj and c contain objective and constraint values at x. First
and second derivative arguments are not currently defined and should not be examined.

KTR_set_mip_node_callback()

int KNITRO_API KTR_set_mip_node_callback (KTR_context_ptr kc,
KTR_callback * const fnPtr);

278 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

This callback function is for mixed integer (MIP) problems only. Set the callback function that is invoked after Knitro
finishes processing a node on the branch-and-bound tree (i.e., after a relaxed subproblem solve in the branch-and-
bound procedure). The function should not modify any Knitro arguments. Arguments x and lambda contain the
solution from the node solve. Arguments obj and c contain objective and constraint values at x. First and second
derivative arguments are not currently defined and should not be examined.

KTR_set_ms_initpt_callback()

typedef int KTR_ms_initpt_callback (const int nSolveNumber,
const int n,
const int m,
const double * const xLoBnds,
const double * const xUpBnds,

double * const x,
double * const lambda,
void * const userParams);

int KNITRO_API KTR_set_ms_initpt_callback (KTR_context_ptr kc,
KTR_ms_initpt_callback * const fnPtr);

This callback allows applications to define a routine that specifies an initial point before each local solve in the mul-
tistart procedure. On input, arguments x and lambda are the randomly generated initial points determined by Knitro,
which can be overwritten by the user. The argument nSolveNumber is the number of the multistart solve. Return 0 if
successful, a negative error code if not. Use KTR_set_ms_initpt_callback to set this callback function.

KTR_set_puts_callback()

typedef int KTR_puts (const char * const str,
void * const userParams);

int KNITRO_API KTR_set_puts_callback (KTR_context_ptr kc,
KTR_puts * const fnPtr);

Applications can set a “put string” callback function to handle output generated by the Knitro solver. By default Knitro
prints to stdout or a file named knitro.log, as determined by KTR_PARAM_OUTMODE. The KTR_puts() func-
tion takes a userParams argument which is a pointer passed directly from KTR_solve(). Note that userParams will
be a NULL pointer until defined by an application call to KTR_new_puts() or KTR_solve(). The KTR_puts()
function should return the number of characters that were printed.

3.9.6 Reading solution properties

KTR_get_number_FC_evals()

int KNITRO_API KTR_get_number_FC_evals (const KTR_context_ptr kc);

Return the number of function evaluations requested by KTR_solve(). A single request evaluates the objective and
all constraint functions. Returns a negative number if there is a problem with kc.

KTR_get_number_GA_evals()

int KNITRO_API KTR_get_number_GA_evals (const KTR_context_ptr kc);

Return the number of gradient evaluations requested by KTR_solve(). A single request evaluates first derivatives
of the objective and all constraint functions. Returns a negative number if there is a problem with kc.

KTR_get_number_H_evals()

3.9. Knitro 10.x and Earlier Callable Library API 279



Artelys Knitro Documentation, Release 11.0.0

int KNITRO_API KTR_get_number_H_evals (const KTR_context_ptr kc);

Return the number of Hessian evaluations requested by KTR_solve(). A single request evaluates second derivatives
of the objective and all constraint functions. Returns a negative number if there is a problem with kc.

KTR_get_number_HV_evals()

int KNITRO_API KTR_get_number_HV_evals (const KTR_context_ptr kc);

Return the number of Hessian-vector products requested by KTR_solve(). A single request evaluates the product
of the Hessian of the Lagrangian with a vector submitted by Knitro. Returns a negative number if there is a problem
with kc.

KTR_get_number_iters()

int KNITRO_API KTR_get_number_iters (const KTR_context_ptr kc);

Return the number of iterations made by KTR_solve(). Returns a negative number if there is a problem with kc.
For continuous problems only.

KTR_get_number_cg_iters()

int KNITRO_API KTR_get_number_cg_iters (const KTR_context_ptr kc);

Return the number of conjugate gradients (CG) iterations made by KTR_solve(). Returns a negative number if
there is a problem with kc. For continuous problems only.

KTR_get_abs_feas_error()

double KNITRO_API KTR_get_abs_feas_error (const KTR_context_ptr kc);

Return the absolute feasibility error at the solution. Returns a negative number if there is a problem with kc. For
continuous problems only.

KTR_get_rel_feas_error()

double KNITRO_API KTR_get_rel_feas_error (const KTR_context_ptr kc);

Return the relative feasibility error at the solution. Returns a negative number if there is a problem with kc. For
continuous problems only.

KTR_get_abs_opt_error()

double KNITRO_API KTR_get_abs_opt_error (const KTR_context_ptr kc);

Return the absolute optimality error at the solution. Returns a negative number if there is a problem with kc. For
continuous problems only.

KTR_get_rel_opt_error()

double KNITRO_API KTR_get_rel_opt_error (const KTR_context_ptr kc);

Return the relative optimality error at the solution. Returns a negative number if there is a problem with kc. For
continuous problems only.

KTR_get_solution()

int KNITRO_API KTR_get_solution (const KTR_context_ptr kc,
int * const status,
double * const obj,

280 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

double * const x,
double * const lambda);

Return the solution status, objective, primal and dual variables. The status and objective value scalars are returned
as pointers that need to be de-referenced to get their values. The arrays x and lambda must be allocated by the user.
Returns 0 if call is successful; <0 if there is an error.

KTR_get_constraint_values()

int KNITRO_API KTR_get_constraint_values (const KTR_context_ptr kc,
double * const c);

Return the values of the constraint vector in c. The array c must be allocated by the user. Returns 0 if call is successful;
<0 if there is an error.

KTR_get_objgrad_values()

int KNITRO_API KTR_get_objgrad_values (const KTR_context_ptr kc,
double * const objGrad);

Return the values of the objective gradient vector in objGrad. The array objGrad must be allocated by the user. It is a
dense array of dimension “n” (where “n” is the number of variables in the problem). Returns 0 if call is successful; <0
if there is an error. For continuous problems only.

KTR_get_jacobian_values()

int KNITRO_API KTR_get_jacobian_values (const KTR_context_ptr kc,
double * const jac);

Return the values of the constraint Jacobian in jac. The Jacobian values returned correspond to the non-zero sparse
Jacobian indices provided by the user in KTR_init_problem(). The array jac must be allocated by the user.
Returns 0 if call is successful; <0 if there is an error. For continuous problems only.

KTR_get_hessian_values()

int KNITRO_API KTR_get_hessian_values (const KTR_context_ptr kc,
double * const hess);

Return the values of the Hessian (or possibly Hessian approximation) in hess. This routine is currently only valid if 1
of the 2 following cases holds:

1. KTR_HESSOPT_EXACT (presolver on or off), or;

2. KTR_HESSOPT_BFGS or KTR_HESSOPT_SR1, but only with the Knitro presolver off (i.e.
KTR_PRESOLVE_NONE).

In all other cases, either Knitro does not have an internal representation of the Hessian (or Hessian approximation),
or the internal Hessian approximation corresponds only to the presolved problem form and may not be valid for the
original problem form. In these cases hess is left unmodified, and the routine has return code 1.

Note that in case 2 above (KTR_HESSOPT_BFGS or KTR_HESSOPT_SR1) the values returned in hess are the upper
triangular values of the dense quasi-Newton Hessian approximation stored row-wise. There are ((n*n - n)/2 + n) such
values (where “n” is the number of variables in the problem. These values may be quite different from the values of
the exact Hessian.

When KTR_HESSOPT_EXACT (case 1 above) the Hessian values returned correspond to the non-zero sparse Hessian
indices provided by the user in KTR_init_problem().

The array hess must be allocated by the user. Returns 0 if call is successful; 1 if hess was not set because Knitro does
not have a valid Hessian for the model stored; <0 if there is an error. For continuous problems only.

3.9. Knitro 10.x and Earlier Callable Library API 281



Artelys Knitro Documentation, Release 11.0.0

KTR_get_mip_num_nodes()

int KNITRO_API KTR_get_mip_num_nodes (const KTR_context_ptr kc);

Return the number of nodes processed in the MIP solve. Returns a negative number if there is a problem with kc.

KTR_get_mip_num_solves()

int KNITRO_API KTR_get_mip_num_solves (const KTR_context_ptr kc);

Return the number of continuous subproblems processed in the MIP solve. Returns a negative number if there is a
problem with kc.

KTR_get_mip_abs_gap()

double KNITRO_API KTR_get_mip_abs_gap (const KTR_context_ptr kc);

Return the final absolute integrality gap in the MIP solve. Returns KTR_INFBOUND if no incumbent (i.e., integer
feasible) point found. Returns KTR_RC_BAD_KCPTR if there is a problem with kc.

KTR_get_mip_rel_gap()

double KNITRO_API KTR_get_mip_rel_gap (const KTR_context_ptr kc);

Return the final absolute integrality gap in the MIP solve. Returns KTR_INFBOUND if no incumbent (i.e., integer
feasible) point found. Returns KTR_RC_BAD_KCPTR if there is a problem with kc.

KTR_get_mip_incumbent_obj()

double KNITRO_API KTR_get_mip_incumbent_obj (const KTR_context_ptr kc);

Return the objective value of the MIP incumbent solution. Returns KTR_INFBOUND if no incumbent (i.e., integer
feasible) point found. Returns KTR_RC_BAD_KCPTR if there is a problem with kc.

KTR_get_mip_relaxation_bnd()

double KNITRO_API KTR_get_mip_relaxation_bnd (const KTR_context_ptr kc);

Return the value of the current MIP relaxation bound. Returns KTR_RC_BAD_KCPTR if there is a problem with kc.

KTR_get_mip_lastnode_obj()

double KNITRO_API KTR_get_mip_lastnode_obj (const KTR_context_ptr kc);

Return the objective value of the most recently solved MIP node subproblem. Returns KTR_RC_BAD_KCPTR if there
is a problem with kc.

KTR_get_mip_incumbent_x()

int KNITRO_API KTR_get_mip_incumbent_x (const KTR_context_ptr kc,
double * const x);

Return the MIP incumbent solution in x if one exists. Returns 1 if incumbent solution exists and call is successful; 0 if
no incumbent (i.e., integer feasible) exists and leaves x unmodified; <0 if there is an error.

3.9.7 Problem definition defines

KTR_OBJGOAL

282 Chapter 3. Reference manual



Artelys Knitro Documentation, Release 11.0.0

#define KTR_OBJGOAL_MINIMIZE 0
#define KTR_OBJGOAL_MAXIMIZE 1

Possible objective goals for the solver (objGoal in KTR_init_problem()).

KTR_OBJTYPE

#define KTR_OBJTYPE_CONSTANT -1
#define KTR_OBJTYPE_GENERAL 0
#define KTR_OBJTYPE_LINEAR 1
#define KTR_OBJTYPE_QUADRATIC 2

Possible values for the objective type (objType in KTR_init_problem()).

KTR_CONTYPE

#define KTR_CONTYPE_GENERAL 0
#define KTR_CONTYPE_LINEAR 1
#define KTR_CONTYPE_QUADRATIC 2

Possible values for the constraint type (cType in KTR_init_problem()).

KTR_VARTYPE

#define KTR_VARTYPE_CONTINUOUS 0
#define KTR_VARTYPE_INTEGER 1
#define KTR_VARTYPE_BINARY 2

Possible values for the variable type (xType in KTR_mip_init_problem()).

KTR_FNTYPE

#define KTR_FNTYPE_UNCERTAIN 0
#define KTR_FNTYPE_CONVEX 1
#define KTR_FNTYPE_NONCONVEX 2

Possible values for the objective and constraint functions (fnType in KTR_mip_init_problem()).

KTR_LINEARVAR

#define KTR_LINEARVAR_NO 0
#define KTR_LINEARVAR_YES 1

Possible values to indicate whether a variable appears only in linear terms in the problem. Used by
KTR_set_linearvars() function.

Artelys Knitro User’s Manual is copyrighted 2001-2018 by Artelys.

3.9. Knitro 10.x and Earlier Callable Library API 283

http://www.artelys.com/

	Introduction
	User guide
	Reference manual

